A Mathematical Understanding of Red Blood Cell Dynamics

By

Benjamin Brindle

Senior Honors Thesis

Advised by
Dr. Miranda I. Teboh-Ewungkem, Lehigh University (Professor of Practice in Mathematics)

Department of Mathematics
Lehigh University
Bethlehem, Pennsylvania, United States
May 2021

Acknowledgements

I would first like to thank my research advisor, Dr. Miranda Teboh-Ewungkem, for her continued support during this my work on this thesis. Due to her guidance, I have developed into an independent researcher. I also thank the Lehigh University Math Department for allowing me to undertake this work and providing support for me to attend and present at numerous conferences during the development of this thesis.

Although the work done in this thesis deviates from the epidemiological work under the NSF Grant DMS-1814659, my undergraduate research related to this subject commenced via the support of this NSF grant. While independent from this thesis, my undergraduate research under NSF Grant DMS-1814659 enabled me to form a path to undertake this thesis. I would like to thank the NSF for this opportunity, as well as Dr. Carrie Manore (Los Alamos National Laboratory) and Dr. Douglas J. Perkins (University of New Mexico), who were collaborators under this grant and provided invaluable encouragement and support before my work on this thesis began. My collaboration with colleagues at Los Alamos National Laboratory was instrumental in encouraging my pursuit of research, and I thank Dr. Teboh-Ewungkem for facilitating these interactions.

Abstract

Red blood cells are one of the most important components of life in humans and other mammals. Loss of red blood cells has consequences, such as anemia, while overproduction of red blood cells can also have negative consequences. Losses can be the result of phlebotomy, parasitemia, or other diseases, and overproduction can be due to myeloproliferative disorders such as Polycythemia Vera. Red blood cell dynamics within a human involve several stages of precursor cells before a red blood cell fully matures to an erythrocyte. Upon perturbation, a feedback mechanism contingent on loss and level of erythrocytes causes the production of more precursor cells to attempt to return the blood dynamics to equilibrium. We model this process using a system of nonlinear, deterministic, ordinary differential equations. Functions describing this feedback, the stem cell recruitment, and the erythrocyte loss are chosen to examine the system dynamics in different scenarios. Some parameter choices cause a Hopf bifurcation, demonstrating the sensitivity of blood dynamics to the selected parameters. Numerical methods are used to display bifurcation diagrams and transient dynamics for specific function choices. Methods of mathematical analysis such as nondimensionalization and proofs of invariance, positivity, boundedness, and uniqueness for arbitrary functions are given.

Chapter 1

Introduction and Background

Red blood cells are one of the most important components of life in humans and other mammals. Red blood cells are produced through erythropoiesis [8], a component process of hematopoiesis, which develops erythropoietic stem cells into mature red blood cells (erythrocytes). In many adult mammals, such as humans, these stem cells are exclusively produced in the bone marrow, while in others, such as mice, they are additionally produced in the spleen, especially ewhen there is an increased demand for red blood cells [5]. Erythropoiesis involves several stages of precursors as cells develop from stem cells to erythrocytes. Early stages are sensitive to erythropoietin (EPO), while more mature stages are insensitive to EPO. EPO acts as a feedback mechanism regulating erythropoiesis by meeting the oxygen demand of tissues and controlling the production of precursors so that, in a healthy mammal, the production of red blood cells will be equal to the natural death of red blood cells through apoptosis. The study of red blood cell dynamics is important due to the number of health-related problems associated with red blood cells. For example, malaria parasitemia can cause blood loss, leading to anemia, while myeloproliferative disorders such as Polycythemia Vera can cause an overproduction of blood cells so extreme that phlebotomy may be necessary to mitigate the effects of the disease. Furthermore, red blood cell dynamics are not only relevant to the study of disease, but also the menstrual cycle, where blood loss must be regulated to ensure females are not anemic.

Red blood cell dynamics present a scenario that can be studied mathematically to depict the relevant dynamical processes using functional responses. Mackey [9] provided one of the earliest [15] mathematical approaches to modelling aplastic anemia and its origin in hematopoietic stem cells. In contrast to myeloproliferative disorders, aplastic anemia causes insufficient production of blood cells. Together with Glass [10], Mackey helped establish the legitimacy of mathematical modeling as a tool to study dynamical blood diseases. Later work, particularly that of Fuertinger et al. [4] and Tetschke et al. [17], examine erythropoiesis in more detail in specific settings. Fuertinger et al. mathematically explore the situations of recovery after blood donation and adjustment to altitude change, while Tetschke et al. concentrates on a general erythropoiesis model's application to Polycythemia Vera. Thibodeaux [18] and Fonseca and Voit [3] provide mathematical models of erythro-
poiesis under malaria infection. The former showed that the number of parasites produced during the destruction of each erythrocyte has the most significant impact on erythropoiesis and the removal of the toxin hemozoin, used by the parasite to suppress erythropoiesis, may speed recovery of the erythrocyte population. The latter compared several frameworks to model erythropoiesis subject to malaria, finding that discrete recursive equations best captured the dynamics at play. The works mentioned above provide only a sample of the number of red blood cell diseases and situations that can be mathematically modeled to elucidate their underlying dynamics. As such, the development of a generalized mathematical model that can be applied to consider both different external loss factors and different internal factors of blood cell production for numerous situations has clear benefits, as previous work in this field can be examined through the lens of a single model.

The application of this model to studying malaria parasitemia is particularly important. According to the 2020 World Malaria Report [14], there were approximately 409,000 malaria deaths in 2019 , with 67% of which were among children aged under 5 years. Mathematically, the interaction of the malaria parasite within the blood is equivalent in form to a predator-prey interaction where the parasite attacks and infects healthy red blood cells. Like in conventional predator-prey models, the survival of the malarial parasite is contingent upon the continued existence of red blood cell prey. A mathematical model examining the dynamics of blood loss under malaria could help guide medical decisions surrounding the detection of malarial anemia.

In this work, we present a generalized mathematical model of erythropoiesis during loss. This model allows for the implementation of different functional choices to model production of erythrocytes, regulatory feedback, and blood loss due to external factors. This model can be applied to several scenarios with appropriate functional choices, such as Polycythemia Vera, malaria, and loss due to menstruation. Utilization of both mathematical and numerical tools help to illustrate the red blood cell dynamics of these situations.

1.1 Definitions

1.1.1 Biological Definitions

- Anemia: A condition in which the body lacks red blood cells.
- Aplastic anemia: A condition in which the body does not produce enough red blood cells to maintain healthy levels.
- EPO: Erythropoietin, a hormone produced primarily by the kidneys which plays a key role in the production of red blood cells by stimulating the production of BFU-E cells, CFU-E cells, and some erthryoblasts to respond to the oxygen demand of tissues.
- Erythrocytes: Synonymous with mature red blood cells.
- Erythropoiesis: The process of forming mature erythrocytes (a part of hematopoiesis).

Definition 2. A solution to a system of ordinary differential equations $\dot{\mathbf{x}}=\mathbf{f}(\mathbf{x}, t)$ with initial condition $\mathbf{x}\left(t_{0}\right)=\mathbf{x}_{\mathbf{0}}$ is unique if there exists only one solution \mathbf{x}^{*} solving the system with the given conditions. [2]

Definition 3. A solution to a system of ordinary differential equations $\dot{\mathbf{x}}=\mathbf{f}(\mathbf{x}, t)$ with initial condition $\mathbf{x}\left(t_{0}\right)=\mathbf{x}_{\mathbf{0}}$ is bounded above if there exists some constant, finite vector \mathbf{U} such that $\mathbf{x}(t)<\mathbf{U}$ for all t. Similarly, the same solution is bounded below if there exists some constant, finite vector \mathbf{L} such that $\mathbf{L}<\mathbf{x}(t)$ for all t. [2]

Definition 4. A system of ordinary differential equations $\dot{\mathbf{x}}=\mathbf{f}(\mathbf{x}, t)$ with initial condition $\mathbf{x}\left(t_{0}\right)=\mathbf{x}_{\mathbf{0}}$ is positively invariant if, for a solution $\mathbf{x}(t)$ of the problem, $\mathbf{x}(0) \in \mathbb{R}_{+}^{n}$ (vectors in \mathbb{R}^{n} with strictly positive components) implies that $\mathbf{x}(t) \in \mathbb{R}_{+}^{n}$ for all $t>0$. [7]
Definition 5. A steady state or equilibrium point of a system of ordinary differential equations $\dot{\mathbf{x}}=\mathbf{f}(\mathbf{x}, t)$ with initial condition $\mathbf{x}\left(t_{0}\right)=\mathbf{x}_{\mathbf{0}}$ is a point $\left(\mathbf{x}_{\mathbf{s}}, t_{s}\right)$ at which $f\left(\mathbf{x}_{\mathbf{s}}, t_{s}\right)=0$. (77

115 Terminology 1. Nondimensionalization is the removal of physical dimensions from an equation or system by a substitution of variables.

Definition 6. The Jacobian matrix J of a system of n ordinary differential equations $\dot{\mathbf{x}}=\mathbf{f}(\mathbf{x})=\left[f_{1}(\mathbf{x}), \ldots, f_{n}(\mathbf{x})\right]^{T}$ evaluated at the equilibrium point $\mathbf{x}=\mathbf{x}_{\mathbf{c}}$ is the $n \times n$ matrix with elements given by $J_{i j}=\left[\frac{\partial f_{i}(\mathbf{x})}{\partial x_{j}}\right]_{\mathbf{x}=\mathbf{x}_{\mathbf{c}}}$. $[\eta]$
yes, the will be no positive real roots.
Definition 9. A system of differential equations $\dot{\mathbf{x}}=\mathbf{f}(\mathbf{x})$ is a monotone system if $\mathbf{x} \leq \mathbf{y}$ implies $\phi_{t}(\mathbf{x}) \leq \phi_{t}(\mathbf{y})$ for any $t \geq 0$, where $\phi_{t}(x)$ is the trajectory at t started from \mathbf{x}. 16]

Definition 10. A function $x \mapsto f(x)$ is Lipschitz continuous if there exists a positive real number L such that $\|f(x)-f(y)\| \leq L\|x-y\|$ for all x and y in the domain. [2]

Statement 2. The Routh-Hurwitz Criterion for a degree 3 monic polynomial $p(\lambda)=\lambda^{3}+a_{1} \lambda^{2}+a_{2} \lambda+a_{3}$ states that all the roots of $p(\lambda)$ are negative or 150 have negative real parts if and only if $a_{1}>0, a_{2}>0, a_{3}>0$, and $a_{1} a_{2}>a_{3}$.

Chapter 2

The Mathematical Model and its Derivation

We present a generalized model describing red blood cell dynamics under blood loss.

2.1 Assumptions

- The subject is a healthy adult with sufficient iron levels.
- Only the most essential features of erythropoiesis are considered to reduce model complexity.
- Factors of erythropoiesis vary between individuals and can be accounted for by parameters.
- Cells have a constant differentiation rate concerning EPO.
- Stem cells do not have the ability of self-renewal to maintain cell populations.
- EPO feedback and blood plasma regeneration are instant.
- The immature red blood cell stages can be partitioned into two compartments, EPO-proliferating and non-EPO-proliferating.
- Cell age and sized can be averaged by application of the law of large numbers.

2.2 Derivation

Variables	Description	Units
$R_{1}(t)$	Stage 1 of precursor cells - proliferating with respect to EPO - at time t	population
$R_{2}(t)$	Stage 2 of precursor cells - not proliferating with re- spect to EPO - at time t	population
$R_{3}(t)$	Mature erythrocytes at time t	population
t	Time in days	time (days)

Table 2.1: Description of variables used in the model.

Functional Forms	Description	Units
$G\left(R_{1}\right)$	Production of precursor erythrocytes	population $/$ time
$F\left(R_{3}\right)$	Feedback regulating erythropoiesis, dependent on blood loss	unitless
$H\left(R_{3}\right)$	Blood loss due to external factors	population $/$ time

Table 2.2: Functional forms used in the model.

Parameters	Description	Units
β	Individual blood regeneration amplifying factor	unitless
k_{1}, k_{2}	Transition rates between stages	$1 /$ time
$\mu_{1}, \mu_{2}, \mu_{3}$	Apoptosis rates of stages	$1 /$ time
γ	Blood regeneration amplifying factor	$1 /$ time
$R_{1}^{0}, R_{2}^{0}, R_{3}^{0}$	Population sizes of R_{1}, R_{2}, R_{3}, respectively, at $t=0$	population

Table 2.3: Parameters used in the model.

The generalized system of ordinary differential equations (2.1) and its initial conditions (2.2) are stated and represented with a schematic in Figure 2.1:

$$
\begin{align*}
& \dot{R}_{1}=\beta G\left(R_{1}\right)-\beta k_{1} R_{1}-\beta \mu_{1} R_{1}+\gamma F\left(R_{3}\right) R_{1} \\
& \dot{R}_{2}=\beta k_{1} R_{1}-\beta \mu_{2} R_{2}-\beta k_{2} R_{2} \tag{2.1}\\
& \dot{R}_{3}=\beta k_{2} R_{2}-\beta \mu_{3} R_{3}-H\left(R_{3}\right)
\end{align*}
$$

$$
\begin{align*}
R_{1}(0) & =R_{1}^{0} \\
R_{2}(0) & =R_{2}^{0} \tag{2.2}\\
R_{3}(0) & =R_{3}^{0}
\end{align*}
$$

Figure 2.1: Model Schematic
$G\left(R_{1}\right)$ represents the natural growth of the stage one precursors - proliferating with respect to EPO - cells entering the red blood cell line from the bone marrow. $k_{1} R_{1}$ represents the maturation and transition of cells from the EPO-proliferating stage to the non-EPO-proliferating stage. The production of stage one cells is partially dependent on feedback due to EPO, while the later stages are not. $\mu_{1} R_{1}$ is the apoptosis rate (natural death rate) of the first stage of precursor cells. $F\left(R_{3}\right)$ is a feedback function which stimulates the production of stage 1 (EPO-proliferating) precursor cells in the bone marrow when the mature erythrocyte population is low due to loss. $k_{2} R_{2}$ represents the maturation of stage two precursors, those not proliferating with respect to EPO, into mature erythrocytes. $\mu_{2} R_{2}$ is the apoptosis rate of the second stage of precursors. $H\left(R_{3}\right)$ is a function that models additional blood loss due to external factors such as bloodletting or parasitemia. β and γ vary among individuals, representing differences in erythropoiesis. A low β value corresponds to feedback having a larger influence for a longer amount of time. High values of γ, meanwhile, correspond to faster regeneration of blood loss, but can drive the system into oscillatory dynamics.

2.3 Function Choices

To complete the model (2.1) with initial conditions (2.2) we must define functional choices F, G, and H that will govern the model dynamics of system (2.1) with (2.2).

1) Recruitment Function $G\left(R_{1}\right)$:
$G\left(R_{1}\right)$ models the growth rate of stage 1 precursor cells from the bone marrow. We require that G satisfy certain properties to guarantee a healthy stable population of red blood cells.

Proposition 1. For any choice of $G\left(R_{1}\right), G\left(R_{1}\right)$ is a $C^{1}([0, \infty))$ function such that there exists a $R_{1}^{*}>0$ such that for $R_{1}>R_{1}^{*}, G\left(R_{1}\right)$ is non-increasing and for $R_{1}<R_{1}^{*}$, $G\left(R_{1}\right)$ is non-decreasing. Additionally, $\lim _{R_{1} \rightarrow 0^{+}} G\left(R_{1}\right) \geq \Gamma \geq$ $\lim _{R_{1} \rightarrow \infty} G\left(R_{1}\right)$.

Choices of $G\left(R_{1}\right)$:
(1) Constant G : $G\left(R_{1}\right)=L$. This choice is utilized by Tetschke et al. 17 as a constant rate of committed stem cells transitioning to R_{1}.
(2) Logistic $G: G\left(R_{1}\right)=\alpha R_{1}\left(1-\frac{R_{1}}{K}\right)$. A logistic model enables growth rates to be more dependent on the size of the existing population of R_{1} cells.
Definition 11. The logistic model is the differential equation $\frac{d P}{d t}=$ $r P\left(1-\frac{P}{K}\right)$, where P is a population, K is the carrying capacity of that population, and r the logistic growth rate of the population. [1]
2) Feedback Function $F\left(R_{3}\right)$:

For the most part, $F\left(R_{3}\right)$ is a negative feedback function which regulates the production of stage 1 precursor cells $\left(R_{1}\right)$ as a result of changes in the size of the erythrocyte population $\left(R_{3}\right)$ in order to ensure a mammal maintains a healthy stabilized red blood cell count.
Choices of $F\left(R_{3}\right)$:
(1) Linear $F: F\left(R_{3}\right)=1-\frac{R_{3}}{s}$. Tetschke et al. 17] defines this monotonically decreasing choice, where s is the mean steady state erythrocyte count. Tetschke et al. [17] models red blood cell regeneration after loss in the context of the myeloproliferative disorder Polycythemia Vera, which causes increased red blood cell production. This choice of F allows for a faster return to the mean steady state erythrocyte count, as F becomes negative for sufficiently large R_{3}, which enables a faster return to equilibrium when R_{3} is over-saturated, which could occur following regeneration.
(2) Hill-type $F: F\left(R_{3}\right)=\frac{\theta^{n}}{\theta^{n}+R_{3}{ }^{n}}$. Mackey and Glass 10 and Mackey 9 use this hill-type function. This monotonically decreasing function has adjustable slope an inflection point. The authors anticipated use of $n \leq 5$
for this choice. This feedback function allows for much slower return times to equilibrium when compared to the liner F, due to the large tail and asymptotic behavior towards zero of the function as R_{3} grows large.
Definition 12. The hill equation has form $f(x)=\frac{x^{n}}{a+x^{n}}$, where a and n are parameters.

Proposition 2. For any choice of $F\left(R_{3}\right)$, the following properties hold:
i) $F^{\prime}\left(R_{3}\right)<0$ for all R_{3} (F is monotonically decreasing).
ii) $\lim _{R_{3} \rightarrow 0} F\left(R_{3}\right)=1$.
iii) $\lim _{R_{3} \rightarrow R_{3}^{*}} F\left(R_{3}\right)=0$, where R_{3}^{*} is the steady state value of the R_{3} population.

Remark 1. In lieu of the fact that $F\left(R_{3}\right.$ is a negative feedback function, $\gamma F\left(R_{3}\right) R_{1}$ must satisfy the following properties:
i) $\lim _{R_{3} \longrightarrow \infty} \gamma F\left(R_{3}\right) R_{1} \longrightarrow 0$
ii) As $R_{1} \longrightarrow \infty$ and $R_{3} \longrightarrow \infty, \gamma F\left(R_{3}\right) R_{1} \longrightarrow 0$ The growth of R_{1} is $O\left(R_{3}^{-\eta}\right)$, where $\eta>1$.
3) External Loss Function $H\left(R_{3}\right)$: H is a positive, bounded function which models additional loss due to a given situation.
(1) Constant $H: H\left(R_{3}\right)=A$ can be used in the case of constant, continuous loss. The parameter A has units of population/time.
(2) Indicator H : An indicator function may be used for H in the case of a blood donation or blood letting, where a constant loss occurs over some fixed interval of time.
(3) Piecewise-continuous H : More complicated piecewise functions can be used for H to model blood loss due to the menstrual cycle. An example of such a piecewise-continuous function is given, where the parameter A is the same as above:

$$
H\left(R_{3}\right)= \begin{cases}0 & \text { if }(t \quad \bmod 30)<24 \\ A & \text { else }\end{cases}
$$

(4) Sinusoidal H : A sinusoidal H such as $H\left(R_{3}\right)=A|\sin (\pi t / 30)|$ could also be used to model blood loss due to the menstrual cycle.

Proposition 3. We assume that $H(0)=0$. In the above cases, we have omitted this requirement, as numerical results (in later chapters) with prudent choices of initial conditions and parameters show that $R_{3}=0$ does not occur for the choices of H given above.

In the presence of malaria parasitemia, H will be a function of R_{3} and P, where P is the load of the parasite forms that infect healthy red blood cells. For this case, the size of the system would increase to account for the dynamics of the malaria parasitemia. This will be considered in the future. For the purpose of this thesis, we will consider the cases where $H=0$ analytically and numerically and consider the scenarios of $H \neq 0$ enumerated above numerically. In Chapters 3 and 4 we will assume $H=0$ and consider the following four scenarios of F and G :

$$
\begin{array}{cc}
F\left(R_{3}\right)=1-\frac{R_{3}}{s} & G\left(R_{1}\right)=L \\
F\left(R_{3}\right)=\frac{\theta^{n}}{\theta^{n}+R_{3}{ }^{n}} & G\left(R_{1}\right)=L \\
F\left(R_{3}\right)=1-\frac{R_{3}}{s} & G\left(R_{1}\right)=\alpha R_{1}\left(1-\frac{R_{1}}{K}\right) \\
F\left(R_{3}\right)=\frac{\theta^{n}}{\theta^{n}+R_{3}{ }^{n}} & G\left(R_{1}\right)=\alpha R_{1}\left(1-\frac{R_{1}}{K}\right)
\end{array}
$$

We illustrate the shapes and sensitivity to parameters of these functional forms in Figure 2.2 with parameters listed in Table 2.4 .

Parameters	Description	Units
s	Mean steady state erythrocyte count	population
θ	Half-saturation erythrocyte count	population
n	Sensitivity of feedback w.r.t changes in population size	unitless
L	Constant growth rate for R_{1}	population $/$ time
α	Logistic growth rate	$1 /$ time
K	Maximum stimulated size of R_{1}	population

Table 2.4: Parameters used in the functional forms.

Figure 2.2: Both choices of F and both choices of G given above, illustrating sensitivity to parameters.

2.4 Parameter Estimation

2.4.1 Human Parameters and Maximal Variable Sizes

A healthy $75-\mathrm{kg}$ human adult male is known to have a mean steady state count of $s=24.98 \times 10^{12}$ circulating erythrocytes and reticulocytes [8] (p. 482), [4], with 3331×10^{8} cells per kg of body weight [8]. We establish a range of 18×10^{12} to 31×10^{12} in Table 2.5 to account for fluctuations in individual numbers due to varying weight or sex. β and γ reflect the differences in erythropoiesis among individuals, with β representing the individual blood regeneration amplifying factor independent of fractional blood loss and γ representing the individual blood regeneration amplifying factor dependent on fractional blood loss. In Tetschke et al. 17, a base value of $\beta=1$ was chosen in the range $[0.75,3]$ and $\gamma=0.3$ in the range $(0,2]$. A low β value corresponds to feedback having a larger influence for a longer amount of time. High values of γ, meanwhile, correspond to faster regeneration of blood loss, but can potentially drive the system into oscillatory dynamics.
$\mu_{3}=1 / 120$ represents the average 120 day lifespan of the mature erythrocyte in humans [8]. $k_{1}=1 / 8$ and $k_{2}=1 / 6$ reflect, respectively in humans, the 8 days during which precursor cells are EPO-proliferating (the duration of stage 1 precursors' existence) and the subsequent 6 days during which precursor cells are non-EPOproliferating (stage 2 precursors) [17] [8]. μ_{1} and μ_{2} represent the apoptosis rate of the stage 1 and stage 2 precursor cells, respectively, and are assumed to be negligibly 0 in humans by Tetschke et al. [17]. Fuertinger et al. [4], however, suggests that choices of μ_{1} as large as 0.35 may be appropriate for CFU-E cells, which we take into account in the corresponding range of $[0,0.35]$ for μ_{1}. We estimate apoptosis
for μ_{2} to be similar and give an identical range for this parameter.
L is chosen to provide a constant growth rate of stage 1 precursor cells that will exactly balance the natural death of erythrocytes given by μ_{3} when there is no external loss $(H=0)$ and subsequently no feedback $(F=0)$ because the erythrocyte population is at its mean steady state count. This situation corresponds to $\dot{R}_{1}=$ $\dot{R}_{2}=\dot{R}_{3}=0$ and $R_{3}=s$. It implies that $L=\mu_{3} s$, assuming $\mu_{1}=\mu_{2}=0$. Using the established values and ranges for s and μ_{3} given above, we have that $L=0.21 \times 10^{12}$ on $\left[0.15 \times 10^{12}, 0.26 \times 10^{12}\right]$. K represents the maximal stimulated value of stage 1 precursor cells. We estimate the value of K by first considering the model at a steady state where $H=0, \dot{R}_{1}=\dot{R}_{2}=\dot{R}_{3}=0$, and $R_{3}=s$. In this scenario, assuming $\mu_{1}=\mu_{2}=0$, the relationship $R_{1}=\frac{\mu_{3}}{k_{1}} R_{3}$ holds, meaning that we can compute the mean steady state value of R_{1} in terms of the given parameter value of s. Here, we have a calculated mean steady state count of stage 1 precursor cells in the range of $[1.2,2.07]$ ($x 10^{12}$ cells). To compute an estimate for the maximal stimulated value of stage 1 precursor cells, we multiply this range by 4 to produce a coarse upper bound for use in the logistic function choice of $G\left(R_{1}\right)$. Thus, the estimated value for K is 6.66×10^{12} on [4.8, 8.27] $\left({\left.\mathrm{x} 10^{12}\right)}^{1}\right.$.

We estimate α, the growth rate of the logistic stage 1 precursor growth function G, from numerical simulation. $\alpha=0.166$ on the range $[0.05,0.4]$ produces results in which the steady state erythrocyte count value corresponds to the ranges given above. Finally, n and θ are chosen based on Mackey and Glass [10] and Mackey [9], where θ is the half-saturation value and $n \leq 5$. We choose $n=5$ with a range of (0 , 5], and take $\theta=s / 2$, since θ is used in the hill-type function choice of F, which is a function of R_{3}, a variable which has a corresponding mean steady state count as s. Hence $\theta=12.5 \times 10^{12}$ on a range of 9×10^{12} to 16×10^{12}.

2.4.2 Mouse Parameters and Maximal Variable Sizes

We next discuss relevant parameters for laboratory mice. A healthy adult laboratory mouse is known to have a mean steady state count of approximately $s=19 \times 10^{9}$ circulating erythrocytes and reticulocytes [5], with $7-11 \times 10^{12}$ cells per liter of blood (5). We establish a range of 11×10^{9} to 27×10^{9} in Table 2.5 to account for fluctuations in individual mouse numbers due to varying weight or age. We assume that β and γ can be kept at the same values as they were for humans, as they represent individual-level amplification factors. $\mu_{3} \in[1 / 52,1 / 30]$ represents the 30 52 day lifespan of the mature erythrocyte in mice [5]. For k_{1} and k_{2} we assume that these transition rates will maintain the same ratio with respect to μ_{3} as in humans, thus giving $k_{1} \in[15 / 52,1 / 2]$ and $k_{2} \in[5 / 13,2 / 3]$ by the values of μ_{3} given above. For μ_{1} and μ_{2} we take a baseline value of 0 but maintain the allowable parameter range to be the same as that of humans, $[0,0.35]$. Like in humans, L is chosen from $L=\mu_{3} s$, using the ranges for s and μ_{3} given above. Therefore, $L=19 / 41 \times 10^{9}$ on $\left[11 / 52 \times 10^{9}, 9 / 10 \times 10^{9}\right]$. Similarly, K is chosen by $K=4 \frac{\mu_{3}}{k_{1}} s$, giving 7.7×10^{9} on $[2.93,12.48]\left(\mathrm{x} 10^{9}\right)$. We assume α remains the same as in the human model. n and

Human Parameter Ranges				
Parameter Range of Values		Baseline Value	Dimension	Reference
μ_{1}	[0,0.35]	0	1/day	Fuertinger et al. (4)
μ_{2}	[0,0.35]	0	1/day	Estimated
μ_{3}	1/120	1/120	1/day	Tetschke et al. 17]
k_{1}	1/8	1/8	1/day	Tetschke et al. 17]
k_{2}	1/6	1/6	1/day	Tetschke et al. 17]
γ	(0,2]	0.3	1/day	Tetschke et al. 17)
s	[18,31]	24.98	population (x10 ${ }^{12}$ cells)	Tetschke et al. [17], Fuertinger et al. 4]
β	[0.75,3]	1	unitless	Tetschke et al. 17]
L	[0.15, 0.26]	0.21	$\begin{aligned} & \text { population } \\ & \left(\mathrm{x} 10^{12} \text { cells }\right) \end{aligned}$	Tetschke et al. 17
θ	[9,16]	12.5	population (x1012 cells)	Mackey [9]
n	(0,5]	5	unitless	Mackey [9]
α	[0.05,0.4]	0.166	1/day	Estimated
K	[4.8,8.27]	6.66	$\begin{aligned} & \text { population } \\ & \left(\mathrm{x} 10^{12} \text { cells }\right) \end{aligned}$	Estimated

Table 2.5: Range and baseline values for parameters and their dimensional units within a healthy adult human.

Mouse Parameter Ranges				
Parameter Range of Val-ues		Baseline Value	Dimension	Reference
μ_{1}	[0,0.35]	0	1/day	Fuertinger et al. [4], estimated
μ_{2}	[0,0.35]	0	1/day	Estimated
μ_{3}	[1/52, 1/30]	1/41	1/day	Hedrich [5]
k_{1}	[15/52, 1/2]	15/41	1/day	Estimated
k_{2}	[5/13, 2/3]	20/41	1/day	Estimated
γ	$(0,2]$	0.3	1/day	Tetschke et al. (17)
s	[11,27]	19	population (x10 ${ }^{9}$ cells)	Hedrich 5]
β	[0.75,3]	1	unitless	Tetschke et al. [17]
L	[11/52, 9/10]	19/41	population (x10 ${ }^{9}$ cells)	Tetschke et al. [17]
θ	[5.5,13.5]	9.5	population (x10 ${ }^{9}$ cells)	Mackey 9]
n	(0,5]	5	unitless	Mackey [9]
α	[0.05,0.4]	0.166	1/day	Estimated
K	[2.93, 12.48]	7.7	population (x10 ${ }^{9}$ cells)	Estimated

Table 2.6: Range and baseline values for parameters and their dimensional units within a healthy mouse.
θ are chosen analogously to the human parameters based on Mackey and Glass 10 and Mackey [9]. We choose $n=5$ with a range of $(0,5]$, and take $\theta=s / 2$, hence $\theta=9.5 \times 10^{9}$ on a range of 5.5×10^{9} to 13.5×10^{9}.

Chapter 3

Mathematical Analyses

3.1 Basic Model Properties

3.1.2 Positivity of Solutions

Theorem 2. All solutions to (2.1) with initial conditions in \mathbb{R}_{+}^{3} are positive.
Proof. Let $\overrightarrow{R(t)}=\left(R_{1}(t), R_{2}(t), R_{3}(t)\right)$ be an arbitrary solution of 2.1 with initial conditions in \mathbb{R}_{+}^{3}. We proceed by contradiction for each R_{i}, again using a proof technique from Woldegerima et al. [19]. For R_{1}, assume for some $t_{1}>0, R_{1}\left(t_{1}\right)=$ 0 , $\dot{R}_{1}\left(t_{1}\right)<0$, and $R_{2}(t)$ and $R_{3}(t)$ are strictly positive for all $t \in\left(0, t_{1}\right)$. But $\dot{R}_{1}\left(t_{1}\right)=\beta G(0)-(0) \beta k_{1}-(0) \beta \mu_{1} R_{1}+(0) \gamma F\left(R_{3}\right)=\beta G(0) \geq 0$, a contradiction (Proposition 1). Thus $R_{1}(t)>0 \forall t \geq 0$. For R_{2}, assume for some $t_{2}>0$, But from the second equation of (2.1), $R_{2}\left(t_{2}\right)=\beta k_{1} R_{1}-(0) \beta \mu_{2}-(0) \beta k_{2}>0$, as $R_{1}(t)>0$, a contradiction. Thus $R_{2}(t)>0 \forall t \geq 0$. For R_{3}, assume for some $t_{3}>0$, $R_{3}\left(t_{3}\right)=0, \dot{R}_{3}\left(t_{3}\right)<0$, and $R_{1}(t)$ and $R_{2}(t)$ are strictly positive for all $t \in\left(0, t_{3}\right)$. But $R_{3}\left(t_{3}\right)=\beta k_{2} R_{2}-(0) \beta \mu_{3}-H(0)=\beta k_{2} R_{2}>0$, a contradiction (Proposition 3). Thus $R_{3}(t)>0 \forall t \geq 0$. Thus all solutions to (2.1) with initial conditions in \mathbb{R}_{+}^{3} are positive.

3.1.3 Boundedness of Solutions

Theorem 3. All solutions to (2.1) with initial conditions in \mathbb{R}_{+}^{3} are bounded.
Proof. Let $\overrightarrow{R(t)}=\left(R_{1}(t), R_{2}(t), R_{3}(t)\right)$ be an arbitrary solution of 2.1) with initial conditions in \mathbb{R}_{+}^{3}. We proceed by contradiction for R_{1} and directly compute the bound for R_{2} and R_{3}, again using a proof technique from Woldegerima et al [19]. For R_{1}, assume that $R_{1}(t)$ is unbounded. Then for any choice of $M \in \mathbb{R}$, there exists some $t_{4}>0$ such that $R_{1}\left(t_{4}\right)>M$ and $\dot{R}_{1}>0$ in some neighborhood J near t_{4} by continuity of the solution. On J, the following inequality holds:
$0<\dot{R}_{1}=\beta G\left(R_{1}\right)-\beta\left(k_{1}+\mu_{1}\right) R_{1}+\gamma F\left(R_{3}\right) R_{1} \leq \beta G_{M}-\beta\left(k_{1}+\mu_{1}\right) R_{1}+\gamma F\left(R_{3}\right) R_{1}$
${ }_{380}$ Where $G_{M}=\max _{R_{1} \in \mathbb{R}_{+}} G\left(R_{1}\right)$, as $G\left(R_{1}\right)$ is positive and bounded by Proposition 1. In fact, for the two functional choices for G given in Chapter 2.3, we have:

$$
G_{M}= \begin{cases}L & \text { if } G\left(R_{1}\right)=L \\ \frac{\alpha K}{4} & \text { if } G\left(R_{1}\right)=\alpha R_{1}\left(1-\frac{R_{1}}{K}\right)\end{cases}
$$

For choice of M sufficiently large, $\beta G_{M}<\beta k_{1} R_{1}$ in J, implying that the $\gamma F\left(R_{3}\right) R_{1}$ term must be large to achieve the positivity of the expression. However, by Remark 1, $\gamma F\left(R_{3}\right) R_{1}$ will be driven to zero as $R_{1} \longrightarrow \infty$, hence (3.1) cannot be positive, a contradiction. Thus R_{1} is bounded.

For R_{2}, we refer to the second equation of (2.1), and denote the upper bound of $R_{1}(t)$ as A_{1}. The following inequality arises:

$$
\begin{equation*}
\dot{R}_{2}=\beta k_{1} R_{1}-\beta\left(k_{2}+\mu_{2}\right) R_{2} \leq \beta k_{1} A_{1}-\beta\left(k_{2}+\mu_{2}\right) R_{2} \tag{3.2}
\end{equation*}
$$

Using a proof technique of Woldegerima et al [19], we solve the differential equation presented in (3.2) to obtain the following inequality:

$$
\begin{equation*}
R_{2}(t) \leq \frac{k_{1} A_{1}}{\left(k_{2}+\mu_{2}\right)}+C_{1} e^{-\beta\left(k_{2}+\mu_{2}\right) t} \tag{3.3}
\end{equation*}
$$

C_{1} is a positive constant determined by the chosen initial conditions on 2.1). Regardless of the value of C_{1}, as t goes to infinity, the limit supremum of $R_{2}(t)$ is bounded above by $\frac{k_{1} A_{1}}{\left(k_{2}+\mu_{2}\right)}$. Thus R_{2} is bounded; we denote its upper bound as A_{2}.

For R_{3}, the third equation of (2.1) and the positivity and boundedness of H give rise to the following inequality:

$$
\begin{equation*}
\dot{R}_{3}=\beta k_{2} R_{2}-\beta \mu_{3} R_{3}-H\left(R_{3}\right) \leq \beta k_{2} A_{2}-\beta \mu_{3} R_{3} \tag{3.4}
\end{equation*}
$$

3.1.4 Uniqueness of Solutions

Theorem 4. All solutions to (2.1) with initial conditions in \mathbb{R}_{+}^{3} are unique.
Proof. Denote $\vec{\Phi}\left(R_{1}, R_{2}, R_{3}\right)=\dot{R}$ from 2.1). Every function with bounded first partial derivatives is Lipschtiz. The partial derivatives of $\vec{\Phi}$ are as follows:

$$
\begin{align*}
& \frac{\partial \vec{\Phi}}{\partial R_{1}}=\left(\beta G^{\prime}\left(R_{1}\right)-\beta k_{1}-\beta \mu_{1}+\gamma F\left(R_{3}\right), \beta k_{1}, 0\right)^{T} \\
& \frac{\partial \vec{\Phi}}{\partial R_{2}}=\left(0,-\beta k_{2}-\beta \mu_{2}, \beta k_{2}\right)^{T} \tag{3.6}\\
& \frac{\partial \vec{\Phi}}{\partial R_{3}}=\left(\gamma R_{1} F^{\prime}\left(R_{3}\right), 0,-\beta \mu_{3}-H^{\prime}\left(R_{3}\right)\right)^{T}
\end{align*}
$$

Using the infinity norm, we have:

$$
\left\|\frac{\partial \vec{\Phi}}{\partial R_{1}}\right\|_{\infty}=\max _{\vec{R}}\left|\beta G^{\prime}\left(R_{1}\right)-\beta k_{1}-\beta \mu_{1}+\gamma F\left(R_{3}\right), \beta k_{1}\right|
$$

But as $F\left(R_{3}\right) \leq 1$ and, for the two functional choices for G given in Chapter 2.3 we have:

$$
G^{\prime}\left(R_{1}\right)= \begin{cases}0 & \text { if } G\left(R_{1}\right)=L \\ \alpha-\frac{2 \alpha R_{1}}{K} & \text { if } G\left(R_{1}\right)=\alpha R_{1}\left(1-\frac{R_{1}}{K}\right)\end{cases}
$$

We see that $G^{\prime}\left(R_{1}\right)$ is bounded since we have shown that $R_{1}(t), R_{2}(t)$, and $R_{3}(t)$ are positive and bounded, therefore $\left\|\frac{\partial \vec{\Phi}}{\partial R_{1}}\right\|_{\infty}$ is finite. Clearly $\frac{\partial \vec{\Phi}}{\partial R_{2}}$ is bounded as it is a constant vector. Finally, we have:

$$
\left\|\frac{\partial \vec{\Phi}}{\partial R_{3}}\right\|_{\infty}=\max _{\vec{R}}\left|\gamma R_{1} F^{\prime}\left(R_{3}\right),-\beta \mu_{3}-H^{\prime}\left(R_{3}\right)\right|
$$ functions and the sine function have bounded derivatives. The derivatives of the choices of F given in Chapter 2.3 are:

$$
F^{\prime}\left(R_{3}\right)= \begin{cases}-\frac{1}{s} & \text { if } F\left(R_{3}\right)=1-\frac{R_{3}}{s} \\ -\frac{\theta^{n} n R_{3} n-1}{\left(\theta^{n}+R_{3}{ }^{n}\right)^{2}} & \text { if } F\left(R_{3}\right)=\frac{\theta^{n}}{\theta^{n}+R_{3}{ }^{n}}\end{cases}
$$

As R_{3} is positive and bounded, $F^{\prime}\left(R_{3}\right)$ is also bounded, hence $\left\|\frac{\partial \vec{\Phi}}{\partial R_{3}}\right\|_{\infty}$ is finite. Therefore the partial derivatives of $\vec{\Phi}$ are bounded. Thus 2.1) is Lipschitz continuous, and therefore by the existence and uniqueness theorem has a unique solution.

3.1.5 Monotonicity

Theorem 5. The system (2.1) is not a monotone system.
Proof. If the Jacobian matrix of a system is a Metzler matrix, then that system is monotone [16]. A Metzler matrix is a matrix with all non-diagonal terms nonnegative. The Jacobian matrix of (2.1) is given in (3.7):

$$
J\left(R_{1}, R_{2}, R_{3}\right)=\left[\begin{array}{ccc}
\beta G^{\prime}\left(R_{1}\right)-\beta k_{1}-\beta \mu_{1}+\gamma F\left(R_{3}\right) & 0 & \gamma F^{\prime}\left(R_{3}\right) R_{1} \tag{3.7}\\
\beta k_{1} & -\beta k_{2}-\beta \mu_{2} & 0 \\
0 & \beta k_{2} & -\beta \mu_{3}-H^{\prime}\left(R_{3}\right)
\end{array}\right]
$$

Since $F\left(R_{3}\right)$ is monotonically decreasing (Proposition 2), we know $F^{\prime}\left(R_{3}\right)<0$, hence the top right entry in the Jacobian matrix is negative. Therfore the Jacobian is not a Metzler matrix, so (2.1) is not a monotone system.

3.2 Nondimensionalization

We nondimensionalize the system (2.1) to give a more complete understanding of the system by reducing the number of parameters. For each of the four scenarios for F and G presented in Section 2.3, we seek to find appropriate values of T_{0}, A, B, and C such that the variables τ, r_{1}, r_{2}, and r_{3} given in (3.8) are unitless and reduce the number of parameters in the system (2.1).

$$
\begin{equation*}
\tau=\frac{t}{T_{0}}, \quad r_{1}=\frac{R_{1}}{A}, \quad r_{2}=\frac{R_{2}}{B}, \quad r_{3}=\frac{R_{3}}{C} \tag{3.8}
\end{equation*}
$$

Substituting from the expressions in (3.8), the system (2.1) is transformed into
(3.9).

$$
\begin{align*}
& \frac{A}{T_{0}} \frac{d r_{1}}{d \tau}=\beta G\left(A r_{1}\right)-\beta k_{1} A r_{1}-\beta \mu_{1} A r_{1}+\gamma F\left(C r_{3}\right) A r_{1} \\
& \frac{B}{T_{0}} \frac{d r_{2}}{d \tau}=\beta k_{1} A r_{1}-\beta \mu_{2} B r_{2}-\beta k_{2} B r_{2} \tag{3.9}\\
& \frac{C}{T_{0}} \frac{d r_{3}}{d \tau}=\beta k_{2} B r_{2}-\beta \mu_{3} C r_{3}-H\left(C r_{3}\right)
\end{align*}
$$

Further algebraic manipulation of the system in (3.9) yields (3.10).

$$
\begin{align*}
& \frac{d r_{1}}{d \tau}=\beta \frac{T_{0}}{A} G\left(A r_{1}\right)-\beta k_{1} T_{0} r_{1}-\beta \mu_{1} T_{0} r_{1}+\gamma F\left(C r_{3}\right) T_{0} r_{1} \\
& \frac{d r_{2}}{d \tau}=\frac{\beta k_{1} A T_{0}}{B} r_{1}-\beta \mu_{2} T_{0} r_{2}-\beta k_{2} T_{0} r_{2} \tag{3.10}\\
& \frac{d r_{3}}{d \tau}=\frac{\beta k_{2} B T_{0}}{C} r_{2}-\beta \mu_{3} T_{0} r_{3}-\frac{T_{0}}{C} H\left(C r_{3}\right)
\end{align*}
$$ yields (3.11).

$$
\begin{align*}
\frac{d r_{1}}{d \tau} & =\frac{1}{A \mu_{3}} G\left(A r_{1}\right)-\frac{k_{1}}{\mu_{3}} r_{1}-\frac{\mu_{1}}{\mu_{3}} r_{1}+\frac{\gamma}{\beta \mu_{3}} F\left(C r_{3}\right) r_{1} \\
\frac{d r_{2}}{d \tau} & =\frac{k_{1} A}{\mu_{3} B} r_{1}-\frac{\mu_{2}}{\mu_{3}} r_{2}-\frac{k_{2}}{\mu_{3}} r_{2} \tag{3.11}\\
\frac{d r_{3}}{d \tau} & =\frac{k_{2} B}{\mu_{3} C} r_{2}-r_{3}-\frac{1}{\beta \mu_{3} C} H\left(C r_{3}\right)
\end{align*}
$$

Letting $B=\frac{k_{1} A}{\mu_{3}}$ and defining the nondimensional parameters $\delta_{1}, \delta_{2}, \rho$, and a as in (3.14), the system (3.11) can be further simplified to (3.12).

$$
\begin{align*}
\dot{r}_{1} & =\frac{1}{A \mu_{3}} G\left(A r_{1}\right)-\delta_{1} r_{1}+\rho F\left(C r_{3}\right) r_{1} \\
\dot{r}_{2} & =r_{1}-\delta_{2} r_{2} \tag{3.12}\\
\dot{r}_{3} & =a r_{2}-r_{3}-\frac{1}{\beta \mu_{3} C} H\left(C r_{3}\right)
\end{align*}
$$

Referencing each of the cases given in Section 2.3, we determine values for A and C that further reduce the number of parameters in use. These values result in unitless functions f, g, and h, which are rescalings of F, G, and H. These choices are summarized in (3.13), where ω is given in (3.14).

$$
\begin{gather*}
f\left(r_{3}\right)=\left\{\begin{array}{lll}
1-r_{3} & C=s \\
\frac{1}{1+r_{3}^{n}} & C=\theta
\end{array} \quad g\left(r_{1}\right)=\left\{\begin{array}{ll}
1 & A=\frac{L}{\mu_{3}} \\
\omega r_{1}\left(1-r_{1}\right) & A=K
\end{array} \quad h\left(r_{3}\right)=\frac{1}{C \beta \mu_{3}} H\left(C r_{3}\right)\right.\right. \\
\delta_{1}=\frac{k_{1}+\mu_{1}}{\mu_{3}} \tag{3.14}\\
\delta_{2}=\frac{k_{2}+\mu_{2}}{\mu_{3}} \quad \rho=\frac{\gamma}{\beta \mu_{3}} \quad \omega=\frac{\alpha}{\mu_{3}} \\
a= \begin{cases}\frac{k_{1} k_{2} L}{\mu_{3}^{3} s} & \text { if } f\left(r_{3}\right)=1-r_{3} \text { and } g\left(r_{1}\right)=1 \\
\frac{k_{1} k_{2} L}{\mu_{3}^{3} \theta} & \text { if } f\left(r_{3}\right)=\frac{1}{1+r_{3}^{n}} \text { and } g\left(r_{1}\right)=1 \\
\frac{k_{1} k_{2} K}{\mu_{3}^{2} s} & \text { if } f\left(r_{3}\right)=1-r_{3} \text { and } g\left(r_{1}\right)=\omega r_{1}\left(1-r_{1}\right) \\
\frac{k_{1} k_{2} K}{\mu_{3}^{2} \theta} & \text { if } f\left(r_{3}\right)=\frac{1}{1+r_{3}^{n}} \text { and } g\left(r_{1}\right)=\omega r_{1}\left(1-r_{1}\right)\end{cases}
\end{gather*}
$$

Then, finally, the original system (2.1) is transformed to the unitless system in (3.15) through nondimensionalization:

$$
\begin{align*}
& \dot{r}_{1}=g\left(r_{1}\right)-\delta_{1} r_{1}+\rho f\left(r_{3}\right) r_{1} \\
& \dot{r}_{2}=r_{1}-\delta_{2} r_{2} \tag{3.15}\\
& \dot{r}_{3}=a r_{2}-r_{3}-h\left(r_{3}\right)
\end{align*}
$$

With initial conditions given by (3.16):

$$
\begin{align*}
& r_{1}(0)=\frac{R_{1}^{0}}{A}=r_{1}^{0} \\
& r_{2}(0)=\frac{R_{2}^{0} \mu_{3}}{k_{1} A}=r_{2}^{0} \tag{3.16}\\
& r_{3}(0)=\frac{R_{3}^{0}}{C}=r_{3}^{0}
\end{align*}
$$

By (3.13), the nondimensionalized forms of (2.3), (2.4), (2.5), and (2.6), respectively, are restated as follows:

$$
\begin{array}{ccc}
f\left(r_{3}\right)=1-r_{3} & g\left(r_{1}\right)=1 & h\left(r_{3}\right)=0 \\
f\left(r_{3}\right)=\frac{1}{1+r_{3}^{n}} & g\left(r_{1}\right)=1 & h\left(r_{3}\right)=0 \\
f\left(r_{3}\right)=1-r_{3} & g\left(r_{1}\right)=\omega r_{1}\left(1-r_{1}\right) & h\left(r_{3}\right)=0 \tag{3.19}
\end{array}
$$

$$
\begin{equation*}
f\left(r_{3}\right)=\frac{1}{1+r_{3}^{n}} \quad g\left(r_{1}\right)=\omega r_{1}\left(1-r_{1}\right) \quad h\left(r_{3}\right)=0 \tag{3.20}
\end{equation*}
$$

In Table 3.1 we state the new, nondimensionalized parameters for the parameters given in Table 2.5

Nondimensionalized Human Parameter Ranges		
Parameters	Range of Values	Baseline Value
δ_{1}	$[15,57]$	15
δ_{2}	$[20,62]$	20
ρ	$[0,240]$	36
ω	$[6,48]$	19.92
n	$(0,5]$	5
a (in the case of (3.17)	$[174.19,520]$	302.64
a (in the case of $(3.18))$	$[337.5,1040]$	604.8
a (in the case of (3.19)	$[46.45,137.83]$	79.98
a (in the case of $(3.20))$	$[90,275.67]$	159.84

Table 3.1: Ranges and baseline values for the nondimensional parameters for a healthy adult human, using Table 2.5 and Chapter 3.2 .

3.3 Existence of Steady States when $H=0$

For each of the below cases, we seek to find the steady state values $\vec{r}^{*}=\left(r_{1}^{*}, r_{2}^{*}, r_{3}^{*}\right)$ of the nondimensionalized system (3.15) for specific choices of f and g with $h=0$. Ultimately, this results in solving the system of equations:

$$
\begin{align*}
& 0=g\left(r_{1}^{*}\right)-\delta_{1} r_{1}^{*}+\rho f\left(r_{3}^{*}\right) r_{1}^{*} \\
& 0=r_{1}^{*}-\delta_{2} r_{2}^{*} \tag{3.21}\\
& 0=a r_{2}^{*}-r_{3}^{*}
\end{align*}
$$

The last two equations in (3.21) yield the equality (3.22) regardless of choice of f and g.

$$
\begin{equation*}
r_{3}^{*}=a r_{2}^{*}=\frac{a}{\delta_{2}} r_{1}^{*} \quad r_{2}^{*}=\frac{1}{\delta_{2}} r_{1}^{*} \tag{3.22}
\end{equation*}
$$

Substitution of the relationship (3.22) into the system at equilibrium (3.21) reduces the problem of finding a steady state \vec{r}^{*} for the system (3.15) to the solution of the single variable problem given in (3.23).

$$
\begin{equation*}
0=g\left(r_{1}^{*}\right)-\delta_{1} r_{1}^{*}+\rho f\left(\frac{a}{\delta_{2}} r_{1}^{*}\right) r_{1}^{*} \tag{3.23}
\end{equation*}
$$

3.3.1 Existence of Case 1: Linear F, Constant G

In this case we have $f\left(r_{3}\right)=1-r_{3}$ and $g\left(r_{1}\right)=1$. Substitution into (3.23) yields:

$$
\begin{equation*}
1-\delta_{1} r_{1}^{*}+\rho\left(1-\frac{a}{\delta_{2}} r_{1}^{*}\right) r_{1}^{*}=1+\left(\rho-\delta_{1}\right) r_{1}^{*}-\frac{\rho a}{\delta_{2}}\left(r_{1}^{*}\right)^{2}=0 \tag{3.24}
\end{equation*}
$$

In all scenarios, there is only one positive steady state, where r_{1}^{*} given by (3.25) and \vec{r}^{*} is given in (3.26) by use of 3.22 .

$$
\begin{gather*}
r_{1}{ }^{*}=\frac{\rho-\delta_{1}+\sqrt{\left(\rho-\delta_{1}\right)^{2}+4 \rho \frac{a}{\delta_{2}}}}{2 \rho \frac{a}{\delta_{2}}} \tag{3.25}\\
\vec{r}^{*}=\left(r_{1}^{*}, r_{2}^{*}, r_{3}^{*}\right)=\left(\rho-\delta_{1}+\sqrt{\left(\rho-\delta_{1}\right)^{2}+4 \rho \frac{a}{\delta_{2}}}\right)\left(\frac{1}{2 \rho \frac{a}{\delta_{2}}}, \frac{1}{2 \rho a}, \frac{1}{2 \rho}\right) \tag{3.26}
\end{gather*}
$$

We summarize the existence result for this case in Theorem 6 below.

Theorem 6. Existence of Steady State for Case 1:

The system (3.15) together with initial conditions (3.16) and functional choices (3.17) has a unique, positive steady state for all positive parameter values, defined by (3.26) as:

$$
\vec{r}^{*}=\left(r_{1}^{*}, r_{2}^{*}, r_{3}^{*}\right)=\left(\rho-\delta_{1}+\sqrt{\left(\rho-\delta_{1}\right)^{2}+4 \rho \frac{a}{\delta_{2}}}\right)\left(\frac{1}{2 \rho \frac{a}{\delta_{2}}}, \frac{1}{2 \rho a}, \frac{1}{2 \rho}\right)
$$

3.3.2 Existence of Case 2: Hill-type F, Constant G

In this case we have $f\left(r_{3}\right)=\frac{1}{1+r_{3}^{n}}$ and $g\left(r_{1}\right)=1$. Substitution into 3.23 yields:

$$
\begin{equation*}
1-\delta_{1} r_{1}^{*}+\rho \frac{1}{1+\left(\frac{a}{\delta_{2}} r_{1}^{*}\right)^{n}} r_{1}^{*}=0 \tag{3.27}
\end{equation*}
$$

Rearrangement of terms transforms (3.27) to (3.28).

$$
\begin{equation*}
-\delta_{1}\left(\frac{a}{\delta_{2}}\right)^{n} r_{1}^{n+1}+\left(\frac{a}{\delta_{2}}\right)^{n} r_{1}^{n}+\left(\rho-\delta_{1}\right) r_{1}+1=0 \tag{3.28}
\end{equation*}
$$

For positive-integer-valued n, Descartes' rule of signs implies that (3.28) will have exactly 1 positive real root if $\left(\rho-\delta_{1}\right)>0$. Otherwise, (3.28) could have 1 or 3 positive real roots. We summarize this result for this case in Theorem 7 below.

Theorem 7. Existence of Steady State for Case 2:

A necessary condition for the system (3.15) together with initial conditions (3.16) and functional choices (3.18) to have exactly one positive steady state is $\left(\rho-\delta_{1}\right)>0$. If $\left(\rho-\delta_{1}\right) \leq 0$, there are either one or three positive steady states.

To understand which parameter values cause r_{1}^{*} to fall within the ranges given by our nondimensionalized human parameter choices from Table 3.1 and to determine behavior when $\left(\rho-\delta_{1}\right) \leq 0$, we generate several plots in MATLAB for varying choices of the human parameters n, a, and ρ. Results for mice follow analogously. Finding r_{1}^{*} by finding the roots of the polynomial given in (3.28) is equivalent to finding the intersection point or points of the graphs of $U\left(r_{1}\right)=\delta_{1}\left(\frac{a}{\delta_{2}}\right)^{n} r_{1}{ }^{n+1}-\left(\frac{a}{\delta_{2}}\right)^{n} r_{1}{ }^{n}$ and $V\left(r_{1}\right)=\left(\rho-\delta_{1}\right) r_{1}+1$. Graphically we can see the existence of r_{1}^{*} within the determined ranges in Figure 3.1.

Figure 3.1: Graphs showing the intersection points of U and V for varying human parameter values of n, a, and ρ to demonstrate the existence of r_{1}^{*} for case 2: hill-type f, constant g.

Further numerical analysis indicates that at most 1 root will exist for $\left(\rho-\delta_{1}\right) \leq 0$ within the biologically feasible ranges for r_{1} given by the parameter choices. As can be seen in the bottom right of Figure 3.1, for certain parameter values - in this case $a=700, \rho=100, n=5, r_{1}^{*}$ is not in the desired range $-U$ and V do not intersect within the desired domain of r_{1}.

Remark 2. For the parameters given in Tables 2.5 and 2.6, the system (3.15) together with initial conditions (3.16) and functional choices (3.18) has exactly one positive steady state.

3.3.3 Existence of Case 3: Linear F, Logistic G

In this case we have $f\left(r_{3}\right)=1-r_{3}$ and $g\left(r_{1}\right)=\omega r_{1}\left(1-r_{1}\right)$. Substitution into (3.23) yields:

$$
\begin{equation*}
\omega r_{1}^{*}\left(1-r_{1}^{*}\right)-\delta_{1} r_{1}^{*}+\rho\left(1-\frac{a}{\delta_{2}} r_{1}^{*}\right) r_{1}^{*}=0 \tag{3.29}
\end{equation*}
$$

$$
\Longrightarrow r_{1}^{*}=0 \text { or } r_{1}{ }^{*}=\frac{\rho-\delta_{1}+\omega}{\omega+\rho \frac{a}{\delta_{2}}} \text { if }\left(\rho-\delta_{1}+\omega\right)>0
$$

There is always a trivial steady state $\vec{r}^{*}=(0,0,0)$, corresponding to $r_{1}^{*}=0$. If $\left(\rho-\delta_{1}+\omega\right)>0$, there is also a positive steady state given by (3.30), using (3.22).

$$
\begin{equation*}
\vec{r}^{*}=\left(r_{1}^{*}, r_{2}^{*}, r_{3}^{*}\right)=\left(\frac{\rho-\delta_{1}+\omega}{\omega+\rho \frac{a}{\delta_{2}}}\right)\left(1, \frac{1}{\delta_{2}}, \frac{a}{\delta_{2}}\right) \tag{3.30}
\end{equation*}
$$

We summarize the existence result for this case in Theorem 8 below.

Theorem 8. Existence of Steady State for Case 3:

The system (3.15) together with initial conditions (3.16) and functional choices (3.19) has a trivial steady state for all positive parameter values and a unique, positive steady state given by (3.30) and restated below exactly when $\left(\rho-\delta_{1}+\omega\right)>0$.

$$
\vec{r}^{*}=\left(r_{1}^{*}, r_{2}^{*}, r_{3}^{*}\right)=\left(\frac{\rho-\delta_{1}+\omega}{\omega+\rho \frac{a}{\delta_{2}}}\right)\left(1, \frac{1}{\delta_{2}}, \frac{a}{\delta_{2}}\right)
$$

Remark 3. The trivial steady state given in Theorem 8 corresponds to death in the mammal and biologically is a steady state that is undesirable for the system to be at.

3.3.4 Existence of Case 4: Hill-type F, Logistic G

In this case we have $f\left(r_{3}\right)=\frac{1}{1+r_{3}^{n}}$ and $g\left(r_{1}\right)=\omega r_{1}\left(1-r_{1}\right)$. Substitution into 3.23) yields:

$$
\begin{equation*}
\omega r_{1}^{*}\left(1-r_{1}^{*}\right)-\delta_{1} r_{1}^{*}+\rho \frac{1}{1+\left(\frac{a}{\delta_{2}} r_{1}^{*}\right)^{n}} r_{1}^{*}=0 \tag{3.31}
\end{equation*}
$$

Rearrangement of terms transforms (3.31) to (3.32).

$$
\begin{equation*}
-\omega\left(\frac{a}{\delta_{2}}\right)^{n} r_{1}^{n+2}+\left(\omega-\delta_{1}\right)\left(\frac{a}{\delta_{2}}\right)^{n} r_{1}^{n+1}-\omega r_{1}^{2}+\left(\rho+\omega-\delta_{1}\right) r_{1}=0 \tag{3.32}
\end{equation*}
$$

For positive-integer-valued n, Descartes' rule of signs implies that (3.32) will have 1 or 3 positive real roots if $\left(\omega-\delta_{1}\right)>0$. In the case of $\delta_{1}>\omega$ and $(\rho+\omega)>\delta_{1}$, (3.32) will have 1 positive real root. In the case of $\delta_{1} \geq(\rho+\omega)$, 3.32) will have no positive real roots. We summarize this result for this case in Theorem 9 below.

Theorem 9. Existence of Steady State for Case 4:

The system (3.15) together with initial conditions (3.16) and functional choices (3.20) has a trivial steady state for all positive parameter values.

A necessary condition for the system (3.15) together with initial conditions (3.16) and functional choices (3.20) to have at least one positive steady state is $\delta_{1}<(\rho+\omega)$. If, in addition to $\delta_{1}<(\rho+\omega)$, both $\delta_{1}>\omega$ and $(\rho+\omega)>\delta_{1}$ are satisfied, then there will be exactly one positive steady state. On the other hand, if $\left(\omega-\delta_{1}\right)>0$ in addition to $\delta_{1}<(\rho+\omega)$, then there are either one or three positive steady states. If $\delta_{1} \geq(\rho+\omega)$, there are no positive steady states.

Factoring out r_{1}^{*} from (3.32), we see that further roots correspond to the intersection points of the graphs of $U\left(r_{1}\right)=\omega\left(\frac{a}{\delta_{2}}\right)^{n} r_{1}{ }^{n+1}-\left(\omega-\delta_{1}\right)\left(\frac{a}{\delta_{2}}\right)^{n} r_{1}^{n}$ and $V\left(r_{1}\right)=-\omega r_{1}+\left(\rho+\omega-\delta_{1}\right)$. We generate several plots in MATLAB in figures 3.2, 3.3, and 3.4 to explore the existence of the intersection points of the graphs of U and V for varying choices of n, ω, ρ, and a given by Table 3.1. In certain cases, U and V do not intersect within the desired domain of r_{1}. However, we see that in figures 3.2, 3.3, and 3.4, for the ideal human parameter values, given in the center panel of each figure, intersection points exist in the desired domain. Further numerical analysis indicates that, given the established parameter ranges, at most one root will exist with the biologically feasible ranges for r_{1} given by the parameter values for all other parameter choices given within their respective ranges. Therefore, a situation with 3 positive real roots will never arise in practice.

Remark 4. For the parameters given in Tables 2.5 and 2.6, the system (3.15) together with initial conditions (3.16) and functional choices (3.20) has either one or zero positive steady states.

Figure 3.2: Graphs showing the intersection points of U and V for varying human parameter values of n, a, and ρ with ω constant to demonstrate the existence of r_{1}^{*} for case 4: hill-type f, logistic g.

Intersection(s) of $U\left(r_{1}\right)=\omega\left(a / \delta_{2}\right)^{n} r_{1}^{n+1}-\left(\omega-\delta_{1}\right)\left(a / \delta_{2}\right)^{n} r_{1}^{n}$ and $V\left(r_{1}\right)=\left(\rho+\omega-\delta_{1}\right)-\omega r_{1}$ for varying n

Figure 3.3: Graphs showing the intersection points of U and V for varying human parameter values of n, ω, and ρ with a constant to demonstrate the existence of r_{1}^{*} for case 4: hill-type f, logistic g.

Figure 3.4: Graphs showing the intersection points of U and V for varying human parameter values of n, a, and ω with ρ constant to demonstrate the existence of r_{1}^{*} for case 4: hill-type f, logistic g.

3.4 Stability of Steady States when $H=0$

For each of the below cases, we seek to find the stability of the nontrivial steady state values $\vec{r}^{*}=\left(r_{1}^{*}, r_{2}^{*}, r_{3}^{*}\right)$ determined in Chapter 3.3 of the nondimensionalized system (3.15). Much of our stability analysis can be done through examination of the Jacobian matrix and the characteristic polynomial of the nondimensionalized system (3.15). The Jacobian matrix is presented in (3.33) while the characteristic polynomial is given in (3.34).

$$
\begin{gather*}
J\left(r_{1}, r_{2}, r_{3}\right)=\left[\begin{array}{ccc}
g^{\prime}\left(r_{1}\right)-\delta_{1}+\rho f\left(r_{3}\right) & 0 & \rho f^{\prime}\left(r_{3}\right) r_{1} \\
1 & -\delta_{2} & 0 \\
0 & a & -1-h^{\prime}\left(r_{3}\right)
\end{array}\right] \tag{3.33}\\
p(\lambda)=-a \rho f^{\prime}\left(r_{3}^{*}\right) r_{1}^{*}-\left(\delta_{2}+\lambda\right)\left(1+h^{\prime}\left(r_{3}^{*}\right)+\lambda\right)\left(g^{\prime}\left(r_{1}^{*}\right)-\delta_{1}+\rho f\left(r_{3}^{*}\right)-\lambda\right) \tag{3.34}
\end{gather*}
$$

We rewrite (3.34) in the form given in (3.35), where P, Q, and R give the coefficients of the nondimensional characteristic polynomial.

$$
\begin{align*}
& \lambda^{3}+P \lambda^{2}+Q \lambda+R \\
& P=\left(1+h^{\prime}\left(r_{3}^{*}\right)+\delta_{2}-g^{\prime}\left(r_{1}^{*}\right)+\delta_{1}-\rho f\left(r_{3}^{*}\right)\right) \\
& Q=\left(\delta_{2}\left(1+h^{\prime}\left(r_{3}^{*}\right)\right)+\left(\delta_{2}+1+h^{\prime}\left(r_{3}^{*}\right)\right)\left(-g^{\prime}\left(r_{1}^{*}\right)+\delta_{1}-\rho f\left(r_{3}^{*}\right)\right)\right) \\
& R=\left(-a \rho f^{\prime}\left(r_{3}^{*}\right) r_{1}^{*}+\delta_{2}\left(1+h^{\prime}\left(r_{3}^{*}\right)\right)\left(-g^{\prime}\left(r_{1}^{*}\right)+\delta_{1}-\rho f\left(r_{3}^{*}\right)\right)\right) \tag{3.35}
\end{align*}
$$

If the coefficients P, Q, and R satisfy the Routh-Hurwitz Criterion (2) for a specific choice of f, g, and h at a specific steady state \vec{r}^{*}, then \vec{r}^{*} is a stable equilibrium point of the nondimensional system (3.15).

Alternatively, if there is a trivial equilibrium point $\vec{r}^{*}=(0,0,0)$, as seen in chapters 3.3 .3 and 3.3.4, we may simply use the nondimensional Jacobian matrix (3.33) to determine stability. When $\vec{r}^{*}=\mathbf{0}, J$ is the lower triangular matrix given in (3.36), hence its eigenvalues are just its diagonal entries. If all these diagonal entries are negative, the origin will be a stable steady state, otherwise it will be unstable.

$$
J(0,0,0)=\left[\begin{array}{ccc}
g^{\prime}(0)-\delta_{1}+\rho & 0 & 0 \tag{3.36}\\
1 & -\delta_{2} & 0 \\
0 & a & -1-h^{\prime}(0)
\end{array}\right]
$$

For each of the cases below we utilize analytic techniques or MATLAB to determine the sign of P, Q, and R and if $P Q>R$ for the nontrivial equilibrium points found in Chapter 3.3 for varying human parameter choices within the ranges given in Table 3.1 to learn more about the stability of that point. Results for mice follow analogously. For use in our model, stable equilibrium points are the most important. The stability of these points will also play into later bifurcation analysis.

3.4.1 Stability of Case 1: Linear F, Constant G

In this case we have $f\left(r_{3}\right)=1-r_{3}$ and $g\left(r_{1}\right)=1$. From Chapter 3.3.1, we recall that $r_{3}{ }^{*}=\frac{\rho-\delta_{1}+\sqrt{\left(\rho-\delta_{1}\right)^{2}+4 \rho \frac{a}{\delta_{2}}}}{2 \rho}$ and $r_{1}^{*}=\frac{\delta_{2}}{a} r_{3}^{*}$. For all positive parameter choices, r_{1}^{*} and r_{3}^{*} are positive. Substitution into (3.35) yields:

$$
\begin{align*}
& P=\left(1+\delta_{2}+\delta_{1}-\rho+\rho r_{3}^{*}\right) \\
& Q=\left(\delta_{2}+\left(\delta_{2}+1\right)\left(\delta_{1}-\rho+\rho r_{3}^{*}\right)\right) \\
& R=\left(a \rho r_{1}^{*}+\delta_{2}\left(\delta_{1}-\rho+\rho r_{3}^{*}\right)\right) \tag{3.37}
\end{align*}
$$

Notice that $\delta_{1}-\rho+\rho r_{3}^{*}=\delta_{1}-\rho+\frac{\rho-\delta_{1}+\sqrt{\left(\rho-\delta_{1}\right)^{2}+4 \rho \frac{a}{\delta_{2}}}}{2}=\frac{\delta_{1}-\rho}{2}+\frac{\sqrt{\left(\delta_{1}-\rho\right)^{2}+4 \rho \frac{a}{\delta_{2}}}}{2}>0$ since $\sqrt{\left(\delta_{1}-\rho\right)^{2}+4 \rho \frac{a}{\delta_{2}}}>\left|\delta_{1}-\rho\right|$ as the parameters are positive. Therefore P, Q, and R are all strictly positive for relevant parameter choices. For $P Q>R$, we consult MATLAB and see that this condition holds for all parameter values given by Table 3.1. See the code given in the Appendix. Therefore the equilibrium point computed in Chapter 3.3.1 is a stable steady state for all relevant parameter values as the Routh-Hurwitz Criterion are satisfied.

In figures 3.5, 3.6, and 3.7 we generate plots of the expressions for P, Q, and R given in (3.37) in MATLAB for varying values of the parameters $\delta_{1}, \delta_{2}, \rho$, and a. We notice that, in these figures, increasing δ_{2} increases the distance from the 0 plane, while changing δ_{1} impacts the asymptotic behavior for small values of ρ.

Figure 3.5: For case 1: linear f, constant g, the surface P is plotted as a function of varying $\delta_{1}, \delta_{2}, \rho$, and a. For all values, the surface P lies above the green plane representing $P=0$.

Figure 3.6: For case 1: linear f, constant g, the surface Q is plotted as a function of varying $\delta_{1}, \delta_{2}, \rho$, and a. For all values, the surface Q lies above the green plane representing $Q=0$.

Figure 3.7: For case 1: linear f, constant g, the surface R is plotted as a function of varying $\delta_{1}, \delta_{2}, \rho$, and a. For all values, the surface R lies above the green plane representing $R=0$.

3.4.2 Stability of Case 2: Hill-type F, Constant G

In this case we have $f\left(r_{3}\right)=\frac{1}{1+r_{3}^{n}}$ and $g\left(r_{1}\right)=1$. Substitution into 3.35 yields:

$$
\begin{align*}
& P=\left(1+\delta_{2}+\delta_{1}-\rho \frac{1}{1+r_{3}^{* n}}\right) \\
& Q=\left(\delta_{2}+\left(\delta_{2}+1\right)\left(\delta_{1}-\rho \frac{1}{1+r_{3}^{*}}\right)\right) \\
& R=\left(a \rho \frac{n r_{3}^{* n-1}}{\left(r_{3}^{* n}+1\right)^{2}} r_{1}^{*}+\delta_{2}\left(\delta_{1}-\rho \frac{1}{1+r_{3}^{* n}}\right)\right) \tag{3.38}
\end{align*}
$$ away from being stable. From figures $3.8,3.9$, and 3.10 , we note that, like the

previous case, in these figures, increasing δ_{2} increases the distance from the 0 plane, away from being stable. From figures 3.8, 3.9, and 3.10, we note that, like the
previous case, in these figures, increasing δ_{2} increases the distance from the 0 plane, while changing δ_{1} impacts the asymptotic behavior for small values of ρ.
 for varying values of the parameters $\delta_{1}, \delta_{2}, \rho$, and a to determine the signs of these values. From figures 3.8, 3.9, and 3.10, we see that P, Q, and R are all strictly positive for relevant parameter choices. This means that the characteristic polynomial for this case has no positive real roots. However, to determine the stability of the equilibrium point computed in Chapter 3.3.2, we also must examine the inequality $P Q>R$. In Figure 3.11 we plot $P Q / R$ for varying values of the parameters $\delta_{1}, \delta_{2}, \rho$, and a. If the surface $P Q / R$ lies in the range $[0,1]$, we have $P Q<R$ and hence the Routh-Hurwitz Criterion are not satisfied. We notice that for small values of δ_{1} and large values of ρ, the surface falls into this range. Therefore, choice of parameters with the ranges given by Table 3.1 can drive the equilibrium

Figure 3.8: For case 2: hill-type f, constant g, the surface P is plotted as a function of varying $\delta_{1}, \delta_{2}, \rho$, and a. For all values, the surface P lies above the green plane representing $P=0$.

Figure 3.9: For case 2: hill-type f, constant g, the surface Q is plotted as a function of varying $\delta_{1}, \delta_{2}, \rho$, and a. For all values, the surface Q lies above the green plane representing $Q=0$.

Figure 3.10: For case 2: hill-type f, constant g, the surface R is plotted as a function of varying $\delta_{1}, \delta_{2}, \rho$, and a. For all values, the surface R lies above the green plane representing $R=0$.

Figure 3.11: For case 2: hill-type f, constant g, the surface $P Q / R$ is plotted as a function of varying $\delta_{1}, \delta_{2}, \rho$, and a. We restrict the z-axis range to [0,1]. For some parameter values (first row), larger values of ρ cause the surface to be within this range, indicating that $P Q<R$, so the corresponding equilibrium point is not stable.

3.4.3 Stability of Case 3 : Linear F, Logistic G

In this case we have $f\left(r_{3}\right)=1-r_{3}$ and $g\left(r_{1}\right)=\omega r_{1}\left(1-r_{1}\right)$. We represent the nontrivial equilibrium point by $\vec{r}^{*}=\left(r_{1}^{*}, r_{2}^{*}, r_{3}^{*}\right)$ and recall that $r_{1}^{*}=\frac{\rho-\delta_{1}+\omega}{\omega+\rho \frac{\sigma}{\delta_{2}}}$ and $r_{3}^{*}=\frac{a}{\delta_{2}} r_{1}^{*}$ with existence only when $\left(\rho-\delta_{1}+\omega\right)>0$. Substitution into 3.35 yields:

$$
\begin{align*}
& P=\left(1+\delta_{2}+2 \omega r_{1}^{*}-\omega+\delta_{1}-\rho+\rho r_{3}^{*}\right) \\
& Q=\left(\delta_{2}+\left(\delta_{2}+1\right)\left(2 \omega r_{1}^{*}-\omega+\delta_{1}-\rho+\rho r_{3}^{*}\right)\right) \\
& R=\left(a \rho r_{1}^{*}+\delta_{2}\left(2 \omega r_{1}^{*}-\omega+\delta_{1}-\rho+\rho r_{3}^{*}\right)\right) \tag{3.39}
\end{align*}
$$

Notice that $2 \omega r_{1}^{*}-\omega+\delta_{1}-\rho+\rho r_{3}^{*}=-\left(\rho-\delta_{1}+\omega\right)+2 \omega r_{1}^{*}+\rho \frac{a}{\delta_{2}} r_{1}^{*}=-(\rho-$ $\left.\delta_{1}+\omega\right)+\left(2 \omega+\rho \frac{a}{\delta_{2}}\right) r_{1}^{*}=-r_{1}^{*}\left(\omega+\rho \frac{a}{\delta_{2}}\right)+\left(2 \omega+\rho \frac{a}{\delta_{2}}\right) r_{1}^{*}=\omega r_{1}^{*}$. Therefore, P, Q, and R may be simplified considerably to (3.40).

$$
\begin{align*}
P & =1+\delta_{2}+\omega r_{1}^{*} \\
Q & =\delta_{2}+\left(\delta_{2}+1\right) \omega r_{1}^{*} \tag{3.40}\\
R & =a \rho r_{1}^{*}+\delta_{2} \omega r_{1}^{*}
\end{align*}
$$

As we required $\left(\rho-\delta_{1}+\omega\right)>0$ and positive parameter values for the existence of r_{1}^{*} and r_{3}^{*}, it follows that $r_{1}^{*}>0$ and $r_{3}^{*}>0$. Therefore P, Q, and R are all strictly positive for relevant parameter choices. For $P Q>R$, we observe the plot of $P Q / R$ for varying values of the parameters $\delta_{1}, \delta_{2}, \rho$, and ω given in Figure 3.12. If the surface $P Q / R$ lies in the range $[0,1]$, we have $P Q<R$ and hence the Routh-Hurwitz Criterion are not satisfied. We notice that for small values of δ_{1} and δ_{2} and large
values of ρ, the surface falls into this range. Therefore, choice of parameters with the ranges given by Table 3.1 can drive the nontrivial equilibrium point computed in Chapter 3.3 .3 away from being stable.

In figures 3.13, 3.14, and 3.15, we generate plots of the expressions for P, Q, and R given in (3.39) in MATLAB for varying values of the parameters $\delta_{1}, \delta_{2}, \rho$, and ω. We also plot the condition $\left(\rho-\delta_{1}+\omega\right)>0$ to make clear which parameter choices result in a viable equilibrium point. We note that, like in the preceding cases, in these figures, increasing δ_{2} increases the distance from the 0 plane, while changing δ_{1} impacts the asymptotic behavior for small values of ρ.

Figure 3.12: For case 3: linear f, logistic g, the surface $P Q / R$ is plotted as a function of varying $\delta_{1}, \delta_{2}, \rho$, and ω for $a=79.98$. The condition for existence given in Chapter 3.3.3, $\left(\rho-\delta_{1}+\omega\right)>0$, is represented by the portion of the surface lying behind the red plane. We restrict the z-axis range to $[0,1]$. For some parameter values (first two columns), larger values of ρ cause the surface to be within this range, indicating that $P Q<R$, so the corresponding equilibrium point is not stable. Values plotted along the plane $\left(\rho-\delta_{1}+\omega\right)=0$ are asymptotic and do not contribute to our analysis.

Figure 3.13: For case 3: linear f, logistic g, the surface P is plotted as a function of varying $\delta_{1}, \delta_{2}, \rho$, and ω for $a=79.98$. For all values satisfying the condition for existence given in Chapter 3.3.3, $\left(\rho-\delta_{1}+\omega\right)>0$, given by the portion of the surface lying behind the red plane, the surface P lies above the green plane representing $P=0$.

Figure 3.14: For case 3: linear f, logistic g, the surface Q is plotted as a function of varying $\delta_{1}, \delta_{2}, \rho$, and ω for $a=79.98$. For all values satisfying the condition for existence given in Chapter 3.3.3, $\left(\rho-\delta_{1}+\omega\right)>0$, given by the portion of the surface lying behind the red plane, the surface Q lies above the green plane representing $Q=0$.

Figure 3.15: For case 3: linear f, logistic g, the surface R is plotted as a function of varying $\delta_{1}, \delta_{2}, \rho$, and ω for $a=79.98$. For all values satisfying the condition for existence given in Chapter 3.3.3, $\left(\rho-\delta_{1}+\omega\right)>0$, given by the portion of the surface lying behind the red plane, the surface R lies above the green plane representing $R=0$.

For the trivial steady state, on the other hand, we calculate the nondimensional Jacobian from (3.36).

$$
J(0,0,0)=\left[\begin{array}{ccc}
\omega-2 \omega(0)-\delta_{1}+\rho & 0 & 0 \tag{3.41}\\
1 & -\delta_{2} & 0 \\
0 & a & -1
\end{array}\right]=\left[\begin{array}{ccc}
\omega-\delta_{1}+\rho & 0 & 0 \\
1 & -\delta_{2} & 0 \\
0 & a & -1
\end{array}\right]
$$

From (3.41), we see that all eigenvalues of $J(0,0,0)$ are negative (corresponding to a stable steady state at the origin) when $\left(\rho-\delta_{1}+\omega\right)<0$, otherwise the origin is not stable. This makes sense, as the nontrivial positive equilibrium point only exists for $\left(\rho-\delta_{1}+\omega\right)>0$, and we saw above that it is always stable in that case.

3.4.4 Stability of Case 4: Hill-type F, Logistic G

In this case we have $f\left(r_{3}\right)=\frac{1}{1+r_{3}^{n}}$ and $g\left(r_{1}\right)=\omega r_{1}\left(1-r_{1}\right)$. Substitution into 3.35, where $\vec{r}^{*}=\left(r_{1}^{*}, r_{2}^{*}, r_{3}^{*}\right)$ represents the nontrivial equilibrium point, yields:

$$
\begin{align*}
& P=\left(1+\delta_{2}+2 \omega r_{1}^{*}-\omega+\delta_{1}-\rho \frac{1}{1+r_{3}^{* n}}\right) \\
& Q=\left(\delta_{2}+\left(\delta_{2}+1\right)\left(2 \omega r_{1}^{*}-\omega+\delta_{1}-\rho \frac{1}{1+r_{3}^{*}}\right)\right) \\
& R=\left(a \rho \frac{n r_{3}^{* n-1}}{\left(r_{3}^{* n}+1\right)^{2}} r_{1}^{*}+\delta_{2}\left(2 \omega r_{1}^{*}-\omega+\delta_{1}-\rho \frac{1}{1+r_{3}^{* n}}\right)\right) \tag{3.42}
\end{align*}
$$

We generate plots of the expressions for P, Q, and R given in (3.42) in MATLAB for varying values of the parameters $\delta_{1}, \delta_{2}, \rho$, and a with $\omega=19.92$ to determine the signs of these values. From figures 3.17, 3.18, and 3.19, we see that P, Q, and R are all strictly positive for relevant parameter choices. This means that the characteristic polynomial for this case has no positive real roots. However, to determine the stability of the equilibrium point computed in Chapter 3.3.4, we also must examine the inequality $P Q>R$. In Figure 3.16 we plot $P Q / R$. If the surface $P Q / R$ lies in the range $[0,1]$, we have $P Q<R$ and hence the Routh-Hurwitz Criterion are not satisfied. We notice that for small values of δ_{2} and large values of ρ, the surface falls into this range. Therefore, choice of parameters with the ranges given by Table 3.1 can drive the equilibrium away from being stable.

From figures 3.17, 3.18, and 3.19, we note that, like in the preceding three cases, increasing δ_{2} increases the distance from the 0 plane, while changing δ_{1} impacts the asymptotic behavior for small values of ρ. However, unlike the previous cases, in regions where the condition $\delta_{1} \geq(\rho+\omega)$ given by Theorem 3.3.4 is satisfied, there is no steady state value and consequently no P, Q, or R surface to be plotted for the corresponding parameter values.

Figure 3.16: For case 4: hill-type f, logistic g, the surface $P Q / R$ is plotted as a function of varying $\delta_{1}, \delta_{2}, \rho$, and a for $\omega=19.92$. We restrict the z-axis range to $[0,1]$. For some parameter values (first two columns), larger values of ρ cause the surface to be within this range, indicating that $P Q<R$, so the corresponding equilibrium point is not stable.

Figure 3.17: For case 4: hill-type f, logistic g, the surface P is plotted as a function of varying $\delta_{1}, \delta_{2}, \rho$, and a for $\omega=19.92$. For all values, the surface P lies above the green plane representing $P=0$.

Figure 3.18: For case 4: hill-type f, logistic g, the surface Q is plotted as a function of varying $\delta_{1}, \delta_{2}, \rho$, and a for $\omega=19.92$. For all values, the surface Q lies above the green plane representing $Q=0$.

Figure 3.19: For case 4: hill-type f, logistic g, the surface R is plotted as a function of varying $\delta_{1}, \delta_{2}, \rho$, and a for $\omega=19.92$. For all values, the surface R lies above the green plane representing $R=0$.

For the trivial steady state, on the other hand, we calculate the nondimensional Jacobian from (3.33) in (3.43).

$$
J(0,0,0)=\left[\begin{array}{ccc}
\omega-2 \omega(0)-\delta_{1}+\rho \frac{1}{1+0^{n}} & 0 & 0 \tag{3.43}\\
1 & -\delta_{2} & 0 \\
0 & a & -1
\end{array}\right]=\left[\begin{array}{ccc}
\omega-\delta_{1}+\rho & 0 & 0 \\
1 & -\delta_{2} & 0 \\
0 & a & -1
\end{array}\right]
$$

From (3.41), we see that all eigenvalues of $J(0,0,0)$ are negative (corresponding to a stable steady state at the origin) when $\left(\rho-\delta_{1}+\omega\right)<0$, otherwise the origin is unstable.

3.5 Bifurcation Analysis when $H=0$

Theorem 10. If the characteristic polynomial, written $\lambda^{3}+P \lambda^{2}+Q \lambda+R=0$, of a system of ordinary differential equations has the property that $R=P Q$ for some value \vec{R}_{h} in the system, then the system exhibits a Hopf Bifurcation at \vec{R}_{h}.

Proof. See Ngonghala et al. (12].
Theorem 11. The initial amplitude of solutions of (2.1) at the Hopf Bifurcation point \vec{R}_{h}, should it exist, is given by $\exp \left(\frac{P Q \varepsilon v \tau}{2\left(Q+P^{2}\right)}\right)$.

Proof. We use the methodology of Ngwa 13. Let $\xi=\frac{R}{P Q}>0$, where P, Q, and R are defined in Proposition 4. By theorem 12, at $\xi=\xi_{c}=1$ (2.1) undergoes a Hopf Bifurcation. Write $\lambda=\lambda(\xi)$, such that the roots of the characteristic polynomial are defined as a continuous function of ξ. Thus the characteristic polynomial given in Proposition 4 may be written as:

$$
\begin{equation*}
\lambda^{3}(\xi)+P \lambda^{2}(\xi)+Q \lambda(\xi)+\xi P Q=0 \tag{3.44}
\end{equation*}
$$

At ξ_{c}, 3.44 has a purely imaginary solution pair of $\lambda\left(\xi_{c}\right)= \pm i \sqrt{Q}$ and a negative real solution of $\lambda\left(\xi_{c}\right)=-P$. Implicitly differentiating (3.44) at $\xi=\xi_{c}$ and substituting the imaginary solution pair yields:

$$
\begin{equation*}
\lambda^{\prime}\left(\xi_{c}\right)=\frac{-P Q}{3 \lambda^{2}\left(\xi_{c}\right)+2 P \lambda\left(\xi_{c}\right)+Q}=\frac{P(Q \pm P \sqrt{Q} i)}{2\left(Q+P^{2}\right)} \tag{3.45}
\end{equation*}
$$

For $0<\varepsilon \ll 1$ and $v= \pm 1$, a small perturbation away from the Hopf bifurcation ξ_{c} can be represented as $\xi_{c}+\varepsilon v$. By Taylor Expansion and substitution of (3.45):

$$
\begin{equation*}
\lambda\left(\xi_{c}+\varepsilon v\right) \approx \lambda\left(\xi_{c}\right)+\lambda^{\prime}\left(\xi_{c}\right) \varepsilon v=\frac{P Q}{2\left(Q+P^{2}\right)} \varepsilon v \pm i \sqrt{Q}\left(1+\frac{P^{2}}{2\left(Q+P^{2}\right)} \varepsilon v\right) \tag{3.46}
\end{equation*}
$$

Thus, oscillatory solutions at ξ_{c} have initial amplitude given by:

$$
\begin{equation*}
\exp \left(\frac{P Q \varepsilon v \tau}{2\left(Q+P^{2}\right)}\right) \tag{3.47}
\end{equation*}
$$

Depending on the value of v, the amplitude will either grow $(v=1)$, or decay to zero $(v=-1)$.

For cases 1 (3.3.1) and 3 (3.3.3), where we obtained a closed form expression for \vec{r}^{*}, we seek to find relationships among the parameters to describe the Hopf bifurcation given when $P Q=R$ or $P Q-R=0$ as described by Theorem 10 for the
steady states determined in Chapter 3.3. We explain equations for the bifurcation lotus as functions of the nondimensional parameters.

For case 1, we recall that $r_{1}^{*}=\frac{\rho-\delta_{1}+\sqrt{\left(\rho-\delta_{1}\right)^{2}+4 \rho \frac{a}{\delta_{2}}}}{2 \rho \frac{a}{\delta_{2}}}$ and $r_{3}^{*}=\frac{a}{\delta_{2}} r_{1}^{*}$, with P, Q, and R given by (3.37). To simplify notation, let $A=\left(1+\delta_{2}\right)$ and $B=\rho-\delta_{1}$. Then we have the following:

$$
\begin{gathered}
P=A-B+\rho \frac{a}{\delta_{2}} r_{1}^{*} ; \quad Q=\delta_{2}+A\left(-B+\rho \frac{a}{\delta_{2}} r_{1}^{*}\right) ; \quad R=a \rho r_{1}^{*}+\delta_{2}+\delta_{2}\left(-B+\rho \frac{a}{\delta_{2}} r_{1}^{*}\right) \\
r_{1}^{*}=\frac{\rho-\delta_{1}+\sqrt{\left(\rho-\delta_{1}\right)^{2}+4 \rho \frac{a}{\delta_{2}}}}{2 \rho \frac{a}{\delta_{2}}} \Rightarrow \rho \frac{a}{\delta_{2}} r_{1}^{*}=\frac{B+\sqrt{B^{2}+4 \rho \frac{a}{\delta_{2}}}}{2}
\end{gathered}
$$

Thus we have:

$$
\begin{aligned}
P & =A-B+\frac{B+\sqrt{B^{2}+4 \rho \frac{a}{\delta_{2}}}}{2}=A-\frac{B}{2}+\frac{\sqrt{B^{2}+4 \rho \frac{a}{\delta_{2}}}}{2} \\
Q & =\delta_{2}+A\left(-B+\frac{B+\sqrt{B^{2}+4 \rho \frac{a}{\delta_{2}}}}{2}\right)=\delta_{2}+A\left(-\frac{B}{2}+\frac{\sqrt{B^{2}+4 \rho \frac{a}{\delta_{2}}}}{2}\right) ; \\
R & =a \rho r_{1}^{*}+\delta_{2}+\delta_{2}\left(-B+\frac{B+\sqrt{B^{2}+4 \rho \frac{a}{\delta_{2}}}}{2}\right) \\
& =\delta_{2}\left(\frac{B+\sqrt{B^{2}+4 \rho \frac{a}{\delta_{2}}}}{2}\right)+\delta_{2}+\delta_{2}\left(-\frac{B}{2}+\frac{\sqrt{B^{2}+4 \rho \frac{a}{\delta_{2}}}}{2}\right) \\
& =\delta_{2}\left(\sqrt{B^{2}+4 \rho \frac{a}{\delta_{2}}}\right)+\delta_{2}=\delta_{2}\left(1+\sqrt{B^{2}+4 \rho \frac{a}{\delta_{2}}}\right) \\
P Q & =\left(A-\frac{B}{2}+\frac{\sqrt{B^{2}+4 \rho \frac{a}{\delta_{2}}}}{2}\right)\left(\delta_{2}+A\left(-\frac{B}{2}+\frac{\sqrt{B^{2}+4 \rho \frac{a}{\delta_{2}}}}{2}\right)\right) \\
& =\left(A-\frac{B}{2}\right)\left(\delta_{2}-A \frac{B}{2}\right)+\frac{\sqrt{B^{2}+4 \rho \frac{a}{\delta_{2}}}}{2} A\left(A-\frac{B}{2}+\delta_{2}-A \frac{B}{2}\right)+\frac{A}{4}\left(B^{2}+4 \rho \frac{a}{\delta_{2}}\right) \\
& =A \delta_{2}+\frac{A}{2} B^{2}-\left(A^{2}+\delta_{2}\right) \frac{B}{2}+A \rho \frac{a}{\delta_{2}}+\frac{\sqrt{B^{2}+4 \rho \frac{a}{\delta_{2}}}}{2} A\left(A-\frac{B}{2}+\delta_{2}-A \frac{B}{2}\right)
\end{aligned}
$$

Then setting $P Q=R$ implies that:

$$
\begin{aligned}
& A \delta_{2}+\frac{A}{2} B^{2}-\left(A^{2}+\delta_{2}\right) \frac{B}{2}+A \rho \frac{a}{\delta_{2}}+\frac{\sqrt{B^{2}+4 \rho \frac{a}{\delta_{2}}}}{2} A\left(A-\frac{B}{2}+\delta_{2}-A \frac{B}{2}\right) \\
& \quad=\delta_{2}\left(1+\sqrt{B^{2}+4 \rho \frac{a}{\delta_{2}}}\right) \\
& \Longrightarrow A \delta_{2}+\frac{A}{2} B^{2}-\left(A^{2}+\delta_{2}\right) \frac{B}{2}+A \rho \frac{a}{\delta_{2}}-\delta_{2} \\
& =\delta_{2} \sqrt{B^{2}+4 \rho \frac{a}{\delta_{2}}}-\frac{\sqrt{B^{2}+4 \rho \frac{a}{\delta_{2}}}}{2} A\left(A-\frac{B}{2}+\delta_{2}-A \frac{B}{2}\right)
\end{aligned}
$$

Letting $\Gamma=\delta_{2}-\frac{1}{2} A\left(1+2 \delta_{2}\right)$, we can rewrite and further simplify the left-handside (LHS) and right-hand-side (RHS) of the expression above.

$$
\begin{aligned}
L H S & =A \delta_{2}+\frac{A}{2} B^{2}-\left(A^{2}+\delta_{2}\right) \frac{B}{2}+A \rho \frac{a}{\delta_{2}}-\delta_{2} \\
& =\delta_{2}^{2}+\frac{A}{2} B^{2}-\left(A^{2}+\delta_{2}\right) \frac{B}{2}+A \rho \frac{a}{\delta_{2}} \\
R H S & =\sqrt{B^{2}+4 \rho \frac{a}{\delta_{2}}}\left(\delta_{2}-\frac{1}{2} A\left(A-\frac{B}{2}+\delta_{2}-A \frac{B}{2}\right)\right) \\
& =\sqrt{B^{2}+4 \rho \frac{a}{\delta_{2}}}\left(\delta_{2}-\frac{1}{2} A\left(1+2 \delta_{2}\right)+\frac{A B}{4}\left(2+\delta_{2}\right)\right) \\
& =\left(\Gamma+\frac{A B}{4}\left(2+\delta_{2}\right)\right) \sqrt{B^{2}+4 \rho \frac{a}{\delta_{2}}}
\end{aligned}
$$

Therefore:

$$
L H S=R H S \Longrightarrow \delta_{2}^{2}+\frac{A}{2} B^{2}-\left(A^{2}+\delta_{2}\right) \frac{B}{2}+A \rho \frac{a}{\delta_{2}}=\left(\Gamma+\frac{A B}{4}\left(2+\delta_{2}\right)\right) \sqrt{B^{2}+4 \rho \frac{a}{\delta_{2}}}
$$

Squaring both sides, we see:

$$
\begin{aligned}
& \left(\delta_{2}^{2}+\frac{A}{2} B^{2}-\left(A^{2}+\delta_{2}\right) \frac{B}{2}+A \rho \frac{a}{\delta_{2}}\right)^{2}=\left(\Gamma+\frac{A B}{4}\left(2+\delta_{2}\right)\right)^{2}\left(B^{2}+4 \rho \frac{a}{\delta_{2}}\right) \Longrightarrow \\
& \left(\delta_{2}^{2}+\frac{A}{2} B^{2}-\left(A^{2}+\delta_{2}\right) \frac{B}{2}\right)^{2}+A^{2} \rho^{2}\left(\frac{a}{\delta_{2}}\right)^{2}+2\left(\delta_{2}^{2}+\frac{A}{2} B^{2}-\left(A^{2}+\delta_{2}\right) \frac{B}{2}\right)\left(A \rho \frac{a}{\delta_{2}}\right) \\
& =\left(\Gamma+\frac{A B}{4}\left(2+\delta_{2}\right)\right)^{2} B^{2}+\left(\Gamma+\frac{A B}{4}\left(2+\delta_{2}\right)\right)^{2} 4 \rho \frac{a}{\delta_{2}}
\end{aligned}
$$

Finally, we can write this expression as a polynomial in a and use the quadratic formula to write an expression for a in terms of the other parameters to characterize the bifurcation lotus. By this methodology, the above transforms to:

$$
\begin{aligned}
a^{2}+M a+N & =0 \\
M & =\frac{\delta_{2}}{A \rho}\left(2\left(\delta_{2}^{2}+\frac{A}{2} B^{2}-\left(A^{2}+\delta_{2}\right) \frac{B}{2}\right)-\left(\Gamma+\frac{A B}{4}\left(2+\delta_{2}\right)\right)^{2}\right) \\
N & =\frac{\delta_{2}^{2}}{A^{2} \rho^{2}}\left[\left(\delta_{2}^{2}+\frac{A}{2} B^{2}-\left(A^{2}+\delta_{2}\right) \frac{B}{2}\right)^{2}-\left(\Gamma+\frac{A B}{4}\left(2+\delta_{2}\right)\right)^{2} B^{2}\right]
\end{aligned}
$$

For case 3, we recall that $r_{1}^{*}=\frac{\rho-\delta_{1}+\omega}{\omega+\rho \frac{\sigma}{\delta_{2}}}$ and $r_{3}^{*}=\frac{a}{\delta_{2}} r_{1}^{*}$, with the most simplified forms P, Q, and R given by (3.40). We restate (3.40):

$$
\begin{aligned}
P & =1+\delta_{2}+\omega r_{1}^{*} \\
Q & =\delta_{2}+\left(\delta_{2}+1\right) \omega r_{1}^{*} \\
R & =a \rho r_{1}^{*}+\delta_{2} \omega r_{1}^{*}
\end{aligned}
$$

Next, notice that $R=r_{1}^{*}\left(a \rho+\delta_{2} \omega\right)=\delta_{2} r_{1}^{*}\left(\omega+\rho \frac{a}{\delta_{2}}\right)=\delta_{2}\left(\rho-\delta_{1}+\omega\right)$. Meanwhile, $P Q=\delta_{2}+\left(\delta_{2}+1\right) \omega r_{1}^{*}+\delta_{2}^{2}+\delta_{2}\left(\delta_{2}+1\right) \omega r_{1}^{*}+\delta_{2} \omega r_{1}^{*}+\left(\delta_{2}+1\right) \omega^{2}\left(r_{1}^{*}\right)^{2}$. To find a convenient expression for $P Q-R=0$, we simplify the expression, yielding the expression in (3.48).

$$
\begin{equation*}
(P Q-R)=\delta_{2}\left(1+\delta_{2}\right)+\left[\left(1+\delta_{2}\right)^{2} \omega-a \rho\right] r_{1}^{*}+\left(\delta_{2}+1\right) \omega^{2}\left(r_{1}^{*}\right)^{2}=0 \tag{3.48}
\end{equation*}
$$

From (3.48) we could form polynomials in each of the parameters ρ, a, and ω by multiplying the expression by $\left(\omega+\rho \frac{a}{\delta_{2}}\right)^{2}$. Then, using the quartic, cubic, and quadratic formulas would form an expression for ρ, a, and ω in terms of the other parameters to represent the bifurcation lotus. As we required $\left(\rho-\delta_{1}+\omega\right)>0$ for this steady state to exist, we can conclude the following from (3.48).

Remark 5. For $P Q-R=0$ in this case, it is necessary that $\omega\left(1+\delta_{2}\right)^{2}<a \rho$.
In figure 3.20, we display an implicit plot of the three dimensional bifurcation plot in a, ρ, ω space. For the scope of this thesis, we do not consider bifurcations in δ_{1} or δ_{2}.

Figure 3.20: We implicitly plot the solutions to $(P Q-R)=\delta_{2}\left(1+\delta_{2}\right)+\left[\left(1+\delta_{2}\right)^{2} \omega-\right.$ $a \rho] r_{1}^{*}+\left(\delta_{2}+1\right) \omega^{2}\left(r_{1}^{*}\right)^{2}=0$ to give a bifurcation plot in a, ρ, ω space for case 3 : linear f, logistic g with $\delta_{1}=15$ and $\delta_{2}=20$.

Chapter 4

Numerical Analyses for $H=0$

We run numerical simulations of the system (2.1) in MATLAB using a modified code for plotting the Lorenz equations [6] and the numerical bifurcation package MATCONT for MATLAB, with Hil Meijer's tutorials [11]. In all cases we use the initial conditions 2.2) of $R_{1}^{0}=1.6653, R_{2}^{0}=1.249$, and $R_{3}^{0}=22.5$ to represent a small perturbation away from the theoretical equilibrium state of $R_{3}=24.98$ to allow us to better observe any transient dynamics of the system (2.1).

4.1 Analysis for Case 1: Linear F, Constant G

Here we have $F\left(R_{3}\right)=1-\frac{R_{3}}{s}$ and $G\left(R_{1}\right)=L$. In figure 4.1, we display bifurcation plots for the system, using parameter handles of γ and \bar{L}, for parameter values in and around those given in table 2.5. We see the bifurcation lotus in the γ, L plane divides the space into two regions, the first of which (labeled I) corresponds to stable fixed points and the second of which (II) corresponds to stable limit cycles. This relationship is illustrated in figure 4.2. Finally, plots in $R_{1} \times R_{2} \times R_{3}$ space are given of the solution dynamics to the system for parameters in both regions I and II in figure 4.3. In region I, the solution converges to a stable steady state, while in region II the solution is a limit cycle about the equilibrium.

Figure 4.1: Bifurcation plots for $F\left(R_{3}\right)=1-\frac{R_{3}}{s}$ and $G\left(R_{1}\right)=L$. The middle figure demonstrates behavior in R_{3} when traversing from region II to region I in the left figure with γ held constant, while the right figure demonstrates behavior in R_{3} when traversing from region I to region II in the left figure with L held constant.

Figure 4.2: Plots of R_{i} vs. time for $F\left(R_{3}\right)=1-\frac{R_{3}}{s}$ and $G\left(R_{1}\right)=L$ for each of the regions in the bifurcation plane given in Figure 4.1.

Figure 4.3: Solution curves for $F\left(R_{3}\right)=1-\frac{R_{3}}{s}$ and $G\left(R_{1}\right)=L$ in 3D space.

4.2 Analysis for Case 2: Hill-type F, Constant G

Here we have $F\left(R_{3}\right)=\frac{\theta^{n}}{\theta^{n}+R_{3}{ }^{n}}$ and $G\left(R_{1}\right)=L$. In figure 4.4, we display bifurcation plots for the system, using parameter handles of γ and L, for parameter values in and around those given in table 2.5. We see the bifurcation lotus in the γ, L plane divides the space into two regions, the first of which (labeled I) corresponds to stable fixed points and the second of which (II) corresponds to stable limit cycles. This relationship is illustrated in figure 4.5. Finally, plots in $R_{1} \times R_{2} \times R_{3}$ space are given of the solution dynamics to the system for parameters in both regions I and II in figure 4.6. In region I, the solution converges to a stable steady state, while in region II the solution is a limit cycle about the equilibrium.

Figure 4.4: Bifurcation plots for $F\left(R_{3}\right)=\frac{\theta^{n}}{\theta^{n}+R_{3}{ }^{n}}$ and $G\left(R_{1}\right)=L$. The right figure demonstrates behavior in R_{3} when traversing from region II to region I in the left figure with γ held constant, while the right figure demonstrates behavior in R_{3} when traversing from region I to region II in the left figure with L held constant.

Figure 4.5: Plots of R_{i} vs. time for $F\left(R_{3}\right)=\frac{\theta^{n}}{\theta^{n}+R_{3}{ }^{n}}$ and $G\left(R_{1}\right)=L$ for each of the regions in the bifurcation plane.

Figure 4.6: Solution curves for $F\left(R_{3}\right)=\frac{\theta^{n}}{\theta^{n}+R_{3}{ }^{n}}$ and $G\left(R_{1}\right)=L$ in 3D space.

4.3 Analysis for Case 3: Linear F, Logistic G

Here we have $F\left(R_{3}\right)=1-\frac{R_{3}}{s}$ and $G\left(R_{1}\right)=\alpha R_{1}\left(1-\frac{R_{1}}{K}\right)$. In figure 4.7, we display bifurcation plots for the system, using parameter handles of γ and α, for parameter values in and around those given in table 2.5. We see the bifurcation lotus in the γ, α plane divides the space into two regions, the first of which (labeled I) corresponds to stable fixed points and the second of which (II) corresponds to stable limit cycles. This relationship is illustrated in figure 4.8. Finally, plots in $R_{1} \times R_{2} \times R_{3}$ space are given of the solution dynamics to the system for parameters in both regions I and II in figure 4.9. In region I, the solution converges to a stable steady state, while in region II the solution is a limit cycle about the equilibrium.

Figure 4.7: Bifurcation plots for $F\left(R_{3}\right)=1-\frac{R_{3}}{s}$ and $G\left(R_{1}\right)=\alpha R_{1}\left(1-\frac{R_{1}}{K}\right)$. The right figure demonstrates behavior in R_{3} when traversing from region II to region I in the left figure with γ held constant, while the right figure demonstrates behavior in R_{3} when traversing from region I to region II in the left figure with α held constant.

Figure 4.8: Plots of R_{i} vs. time for $F\left(R_{3}\right)=1-\frac{R_{3}}{s}$ and $G\left(R_{1}\right)=\alpha R_{1}\left(1-\frac{R_{1}}{K}\right)$ for each of the regions in the bifurcation plane.

Figure 4.9: Solution curves for $F\left(R_{3}\right)=1-\frac{R_{3}}{s}$ and $G\left(R_{1}\right)=\alpha R_{1}\left(1-\frac{R_{1}}{K}\right)$ in 3D

4.4 Analysis for Case 4: Hill-type F, Logistic G

Here we have $F\left(R_{3}\right)=\frac{\theta^{n}}{\theta^{n}+R_{3}{ }^{n}}$ and $G\left(R_{1}\right)=\alpha R_{1}\left(1-\frac{R_{1}}{K}\right)$. In figure 4.10, we display bifurcation plots for the system, using parameter handles of γ and α, for parameter values in and around those given in table 2.5. We see the bifurcation lotus in the γ,
α plane divides the space into two regions, the first of which (labeled I) corresponds to stable fixed points and the second of which (II) corresponds to stable limit cycles. This relationship is illustrated in figure 4.11. Finally, plots in $R_{1} \times R_{2} \times R_{3}$ space are given of the solution dynamics to the system for parameters in both regions I and II in figure 4.12. In region I, the solution converges to a stable steady state, while in region II the solution is a limit cycle about the equilibrium.

Figure 4.10: Bifurcation plots for $F\left(R_{3}\right)=\frac{\theta^{n}}{\theta^{n}+R_{3^{n}}}$ and $G\left(R_{1}\right)=\alpha R_{1}\left(1-\frac{R_{1}}{K}\right)$. The right figure demonstrates behavior in R_{3} when traversing from region I through region II back to region I in the left figure with γ held constant, while the right figure demonstrates behavior in R_{3} when traversing from region I to region II in the left figure with α held constant.

Figure 4.11: Plots of R_{i} vs. time for $F\left(R_{3}\right)=\frac{\theta^{n}}{\theta^{n}+R_{3}{ }^{n}}$ and $G\left(R_{1}\right)=\alpha R_{1}\left(1-\frac{R_{1}}{K}\right)$ for each of the regions in the bifurcation plane.

Figure 4.12: Solution curves for $F\left(R_{3}\right)=\frac{\theta^{n}}{\theta^{n}+R_{3}{ }^{n}}$ and $G\left(R_{1}\right)=\alpha R_{1}\left(1-\frac{R_{1}}{K}\right)$ in 3D space.

Chapter 5

Applications to Blood Loss Systems, $H \neq 0$

Below we present several choices of H and the biological context which they may be used to model.

5.1 Constant Loss Function

A constant choice of H could be utilized in cases of constant bleeding or other loss due to disease. In figure 5.2, we display a numerical output for

$$
H\left(R_{3}\right)=A
$$

where $A=0.25$ and all other parameters retain the values in table 2.5. In the figure, we observe R_{i} vs. time when the system is started from a perturbation at $t=0$. We notice that the system settles to a steady state value smaller in magnitude than the case when $H=0$.

Figure 5.1: Plots of R_{i} vs. time for H as a constant function using human parameters.

5.2 Sinusoidal Loss Function

A sinusoidal choice of H could be used to model menstruation. In figure ??, we display a numerical output for

$$
H\left(R_{3}\right)=A|\sin (\pi t / 30)|
$$

where we use $A=0.25$ and all other parameters retain the values in table 2.5 . This periodic choice of H reaches its peak value of A every 30 days, modeling a monthly cycle. In the figure, we observe that R_{3} settles down to fixed oscillations with period 30 days, matching the behavior of this choice of H.

Figure 5.2: Plots of R_{i} vs. time for H as a sinusoidal function using human parameters. R_{3} dynamics follow a period of 30 days, which is the same as the period of this choice of H.

5.3 Piecewise Loss Function

A piecewise choice of H could be used to model periodic loss, such as bloodletting or menstruation. In figure 5.3, we display a numerical output for

$$
H\left(R_{3}\right)= \begin{cases}0 & \text { if }(t \quad \bmod 30)<24 \\ A & \text { else }\end{cases}
$$

where we use $A=0.25$ and all other parameters retain the values in table 2.5 . This piecewise function gives a square wave following a monthly cycle. In the figure, we notice that R_{3} exhibits jagged oscillations with period 30 days, following the periodic impulse behavior of this choice of H.

Figure 5.3: Plots of R_{i} vs. time for H as a piecewise function using human parameters. R_{3} dynamics follow a period of 30 days, which is the same as the period of this choice of H.

While we have illustrated the dynamics for three examples of $H \neq 0$, we can extend this framework to a host of other possibilities. For example, adding a fourth variable for malaria could extend the applicability of the H function, allowing for modeling of malarial parasitemia.

Chapter 6

Discussion

In Chapter 4, we observed bifurcations for each of the four cases of functional choices examined within this thesis. However, in the first case, we notice that the parameter windows necessary for these bifurcations fall outside those given in Table 2.5. The other cases, however, exhibit bifurcations within these biologically reasonable windows, showing that this model of blood dynamics can exhibit oscillatory dynamics for perturbed parameter values. We saw that all four cases exhibited a linearly stable region (within the desired parameter region) with a unique, nontrivial steady state. For the case where G is modeled by a logistic function, this steady state only existed when certain threshold conditions that coincided with the instability of the trivial steady state were met. In Chapter 5, we saw how the system 2.1 can exhibit oscillatory dynamics for an appropriate choice of ongoing loss in the functional H.

Results for mice hold by rescaling of the values obtained for humans. However, the production of precursor cells in the spleen by mice provides an interesting dynamic to the feedback function, as splenic regeneration helps boost feedback following a blood loss. It remains to be seen whether the feedback functions discussed in this thesis can account for this boosted regeneration, or if a second feedback function representing this phenomena would be the more appropriate choice.

In this thesis, we set out to create a generalized model of erythropoiesis during blood loss. Above, we discussed several potential applications of this model to Polycythemia Vera, menstruation, and bloodletting. We examined the impact of parameters on system dynamics and explored the impact of choosing different functions to capture the processes of feedback and production. We mathematically observed the similarity in dynamics among four different functional choices, seeing that a variety of functions can be used to caption the dynamics of erythropoiesis. We also saw how the loss function H can be extended to specific loss scenarios. In the future, linking this function to malarial parasitemia by making H a function of both R_{3} and parasitemia could prove useful in modeling the impact of this disease on the blood.

Chapter 7

Appendix

7.1 Mathematics in Original Variables

Proposition 4. We state the characteristic polynomial $p_{J}(\lambda)$ of (2.1) in (7.1):

$$
\begin{align*}
p_{J}(\lambda) & =-\beta^{2} k_{1} k_{2} \gamma F^{\prime}\left(R_{3}\right) R_{1}-\left(\beta k_{2}+\lambda\right)\left(\beta a+H^{\prime}\left(R_{3}\right)+\lambda\right)\left(\beta G^{\prime}\left(R_{1}\right)-\beta k_{1}+\gamma F\left(R_{3}\right)-\lambda\right) \\
& =\lambda^{3}-\lambda^{2}\left[\beta G^{\prime}\left(R_{1}\right)-\beta k_{1}+\gamma F\left(R_{3}\right)-\beta k_{2}-\beta a-H^{\prime}\left(R_{3}\right)\right] \\
& -\lambda\left[\left(\beta G^{\prime}\left(R_{1}\right)-\beta k_{1}+\gamma F\left(R_{3}\right)\right)\left(\beta k_{2}+\beta a+H^{\prime}\left(R_{3}\right)\right)-\beta k_{2}\left(\beta a+H^{\prime}\left(R_{3}\right)\right)\right] \\
& -\left[\beta^{2} k_{1} k_{2} \gamma F^{\prime}\left(R_{3}\right) R_{1}+\beta k_{2}\left(\beta a+H^{\prime}\left(R_{3}\right)\right)\left(\beta G^{\prime}\left(R_{1}\right)-\beta k_{1}+\gamma F\left(R_{3}\right)\right)\right] \tag{7.1}
\end{align*}
$$

The characteristic polynomial in (7.1) can be written in the form $\lambda^{3}+P \lambda^{2}+$ $Q \lambda+R=0$, where:
$P=-\beta G^{\prime}\left(R_{1}\right)+\beta k_{1}+\beta \mu_{1}-\gamma F\left(R_{3}\right)+\beta k_{2}+\beta \mu_{2}+\beta \mu_{3}+H^{\prime}\left(R_{3}\right)$
$Q=\left(-\beta G^{\prime}\left(R_{1}\right)+\beta k_{1}+\beta \mu_{1}-\gamma F\left(R_{3}\right)\right)\left(\beta k_{2}+\beta \mu_{2}+\beta \mu_{3}+H^{\prime}\left(R_{3}\right)\right)+\left(\beta k_{2}+\beta \mu_{2}\right)\left(\beta \mu_{3}+H^{\prime}\left(R_{3}\right)\right)$
$R=-\beta^{2} k_{1} k_{2} \gamma F^{\prime}\left(R_{3}\right) R_{1}-\left(\beta k_{2}+\beta \mu_{2}\right)\left(\beta \mu_{3}+H^{\prime}\left(R_{3}\right)\right)\left(\beta G^{\prime}\left(R_{1}\right)-\beta k_{1}-\beta \mu_{1}+\gamma F\left(R_{3}\right)\right)$
Notice that if $\left(\beta G^{\prime}\left(R_{1}\right)-\beta k_{1}-\beta \mu_{1}+\gamma F\left(R_{3}\right)\right) \leq 0 ; P>0, Q>0$, and $R>0$ are guaranteed. By Proposition 2 and Proposition 1, this condition will be met for some values of $\vec{R}=\left(R_{1}, R_{2}, R_{3}\right)$ independent of parameters.

885 Theorem 12. If the characteristic polynomial, written $\lambda^{3}+P \lambda^{2}+Q \lambda+R=0$, of a system of ordinary differential equations has the property that $R=P Q$ for some value \vec{R}_{h} in the system, then the system exhibits a Hopf Bifurcation at \vec{R}_{h}.

Proof. See Ngonghala et al. [12].
We will demonstrate that \vec{R}_{h} exists for 2.1) and define the following groupings:

$$
\begin{array}{rlrl}
X & =\left(-\beta G^{\prime}\left(R_{1}\right)+\beta k_{1}-\gamma F\left(R_{3}\right)\right) & Y & =\left(\beta k_{2}+\beta \mu+H^{\prime}\left(R_{3}\right)\right) \\
Z & =-\beta^{2} k_{1} k_{2} \gamma F^{\prime}\left(R_{3}\right) R_{1} & W & =\beta k_{2}\left(\beta \mu+H^{\prime}\left(R_{3}\right)\right)=\beta k_{2}\left(Y-\beta k_{2}\right) \tag{7.2}
\end{array}
$$

From (7.2) and Proposition 4, we have:

$$
\begin{equation*}
P=X+Y \quad Q=X Y+W \quad R=Z+W X \quad P Q=X^{2} Y+Y^{2} X+W X+W Y \tag{7.3}
\end{equation*}
$$

Theorem 13. The system (2.1) can exhibit a Hopf Bifurcation for biologically reasonable parameter and function choices.

Proof. By 7.3 and Theorem 12, \vec{R}_{h} will exist when $Z=X^{2} Y+Y^{2} X+W Y=$ $Y\left(X^{2}+X Y+W\right)$. Using the nondimensionalization given in Section 3.2, this condition can be simplified to the following, with x and y defined:

$$
\begin{gather*}
-\mu k_{1} k_{2} f^{\prime}\left(r_{3}\right) r_{1}=\left(k_{2}+k_{1} x\right)\left(k_{2}+y\right)\left(k_{1} x+y\right) \tag{7.4}\\
x=\left(-f\left(r_{3}\right)-g^{\prime}\left(r_{1}\right)+1\right) \quad y=\left(\mu+h^{\prime}\left(r_{3}\right)\right)
\end{gather*}
$$

Therefore the following equality will hold at the Hopf Bifurcation point, \vec{R}_{h} :

$$
\begin{equation*}
\frac{P Q}{R}=\frac{\left(k_{2}+k_{1} x\right)\left(k_{2}+y\right)\left(k_{1} x+y\right)}{-\mu k_{1} k_{2} f^{\prime}\left(r_{3}\right) r_{1}} \tag{7.5}
\end{equation*}
$$

895 If 2.1 has a biologically reasonable interpretation for both $\frac{P Q}{R} \gg 1$ and $\frac{P Q}{R} \ll 1$, then by the intermediate value theorem, $\frac{P Q}{R}=1$, and thus the Hopf Bifurcation point \vec{R}_{h}, can exist.

When $R_{1} \rightarrow \infty$, if $x>0$, then $\frac{P Q}{R} \gg 1$. If $x<0$ and $k_{2}+k_{1} x<0$, meanwhile, as h is bounded and increasing (Proposition 3) we may find an r_{3} such that $\mu+h^{\prime}\left(r_{3}\right) \leq$ k_{2} since $\mu<k_{2}$ by design. This means the numerator will still be positive, and $\frac{P Q}{R} \gg 1$. This state corresponds to low R_{1} levels - corresponding to large blood loss or death.

In the alternate case of $\frac{P Q}{R} \ll 1$, we take $R_{1}>R_{1}^{*}$, where R_{1}^{*} is the steady state value. Then assume $G^{\prime}\left(R_{1}\right) \leq 0, G^{\prime}\left(R_{1}\right) \rightarrow 0$ as $R_{1} \rightarrow \infty$, and $f\left(r_{3}\right) \geq 1$. These conditions result in $\frac{P Q}{R} \ll 1$ for large R_{1}, so we see this state corresponds to high R_{1} values and an overabundance of precursor cells, in contrast to the previous situations.

Thus we see that these two biological events - low precursor blood cell count or high precursor blood cell count - swing (2.1) away from the situation of $\frac{P Q}{R}=1$ and

7.2 MATLAB Code

MATLAB code used to generate the graphics and numerical results in the preceding chapters is given, excluding MATCONT results, to which credit goes to [11.

7.2.1 Code for Chapter 3.3

${ }_{915}$ To generate the existence plots given in Chapters 3.3.2 and 3.3.4 above, we use the inputs $(1,1 / 8,1 / 6,1 / 120,0.3,24.98,12.5,5, .21, .166,6.66,0,0)$ on the functions presented in the MATLAB code below.

```
function IntersectPlotter2(beta, k1, k2, mu3, gamma, s, theta, ...
    n, L, alpha, K, mul, mu2)
l=1;
a3=[350 604.8 700];
rho=[[12 36 100];
for j=1:3
    for k=1:3
        \Delta1 = (k1+mu1)/mu3;
        \Delta2=(k2+mu2)/mu3;
        R3=18:13/99:31;
        r3=R3/theta;
        r1=r3*\Delta2/a3(j);
        n=1:5;
        lo=(rho(k)-\Delta1).*r1+1;
        subplot(3,3,1)
        plot(r1,lo)
        hold on
        for i=1:5
            ho=-\Delta1*(a3(j)/\Delta2) ^n(i).* ...
                r1.^(n(i)+1)+(a3(j)/\Delta2)^n(i).*r1.^n(i);
            plot(r1, -ho)
        end
        xlabel('r_1'); %ylabel();
        title(sprintf("%s= %s, %s= ...
            %s",'a',num2str(a3(j)),'\rho',num2str (rho(k))));
        hold off
        ylim([min(lo)-2 max(lo)+2])
        lgd=legend('V(r_1)','U(r_1), n=1','U(r_1), n=2','U(r_1), ...
            n=3','U(r_1), n=4','U(r_1), n=5','Location','best');
        lgd.NumColumns = 3;
        l=l+1;
        end
end
sgtitle("Intersection(s) of U(r_1)=\\Delta_1 (a/\\Delta_2)^n ...
    r_1^{n+1}-(a/\\Delta_2)^n r_1^n and V (r_1)=1+(\rho-\\Delta_1)r_1 for ...
    varying n")
end
```

```
%%%%%%%%%
function IntersectPlotter4a(beta, k1, k2, mu3, gamma, s, theta, ...
    n, L, alpha, K, mu1, mu2)
l=1;
a4=[90 159.84 180];
rho=[ll2 36 80];
%W=[llllll
for j=1:3
    for k=1:3
        \Delta1 = (k1+mu1)/mu3;
        \Delta2 = (k2+mu2)/mu3;
        w=alpha/mu3;
        R3=18:13/99:31;
        r3=R3/theta;
        r1=r3*\Delta2/a4(j);
        n=1:5;
        lo=(rho(k)+w-\Delta1)-w.*r1;
        subplot(3,3,1)
        plot(r1,lo)
        hold on
        for i=1:5
            ho=-w*(a4(j)/\Delta2)^n(i).*r1.^(n(i)+1) ...
                +(w-\Delta1)*(a4(j)/\Delta2)^n(i).*r1.^n(i);
            plot(r1,-ho)
        end
        xlabel('r_1'); %ylabel();
        title(sprintf("%s= %s, %s = %s, %s = ...
            %s",'a',num2str(a4(j)),'\rho',num2str(rho(k)),'\omega', ..
            num2str(w)));
        hold off
        ylim([min(lo)-2 max(lo)+2])
        lgd=legend('V(r_1)','U(r_1), n=1','U(r_1), n=2','U(r_1), ...
            n=3','U(r_1), n=4','U(r_1), n=5','Location','best');
        lgd.NumColumns = 3;
        l=l+1;
    end
end
sgtitle("Intersection(s) of U(r_1)=\omega (a/\\Delta_2)^n ...
    r_1^{n+1}-(\omega - \\Delta_1) (a/\\Delta_2)^n r_1^n and V (r_1)=(\rho+ ...
    \omega - \\Delta_1)- \omega r_1 for varying n")
end
function IntersectPlotter4b(beta, k1, k2, mu3, gamma, s, theta, ...
```

```
n, L, alpha, K, mu1, mu2)
l=1;
%a4=[[90 159.84 180}]
rho=[[12 36 80}];
w=[[\begin{array}{lll}{6}&{19.92 21}\end{array}];
for j=1:3
    for k=1:3
        \Delta1 = (k1+mu1)/mu3;
        \Delta2=(k2+mu2)/mu3;
        a4=(k1*k2*K)/(mu3.^2*theta);
        R3=18:13/99:31;
        r3=R3/theta;
        r1=r3*\Delta2/a4;
        n=1:5;
        lo=(rho(k)+w(j)-\DeltaI)-w(j).*r1;
        subplot (3, 3, 1)
        plot(r1,lo)
        hold on
        for i=1:5
        ho=-w(j)* (a4/\Delta2)^n(i).*r1.^(n(i)+1) ...
            +(w(j)-\Delta1)*(a4/\Delta2)^n(i).*r1.^n(i);
        plot(r1,-ho)
        end
        xlabel('r_1'); %ylabel();
        title(sprintf("%s= %s, %S = %s, %s=\ldots
            %s",'a',num2str(a4),'\rho',num2str(rho(k)),'\omega', ...
            num2str(w(j))));
        hold off
        ylim([min(lo)-2 max(lo) +2])
        lgd=legend('V(r_1)','U(r_1), n=1','U(r_1), n=2','U(r_1), ...
            n=3','U(r_1), n=4','U(r_1), n=5','Location','best');
        lgd.NumColumns=3;
        l=l+1;
    end
end
sgtitle("Intersection(s) of U(r_1)=\omega (a/\\Delta_2)^n ...
    r_1^{n+1}-(\omega - \\Delta_1) (a/\\Delta_ 2)^n r r_1^n and V (r_1)=(\rho+ ...
    \omega - \\Delta_1)- \omega r_1 for varying n")
    end
    function IntersectPlotter(beta, k1, k2, mu3, gamma, s, theta, n, ...
        L, alpha, K, mul, mu2)
    l=1;
    134 a4=[l90}10159.84 180];;
```

```
%rho=[llllll
    for j=1:3
    for k=1:3
        \Delta1 = (k1+mu1)/mu3;
        \Delta2 = (k2+mu2)/mu3;
        rho=gamma/(beta*mu3);
        R3=18:13/99:31;
        r3=R3/theta;
        r1=r3*\Delta2/a4(k);
        n=1:5;
        lo=(rho+w(j)-\Delta1)-w(j).*r1;
        subplot(3,3,1)
        plot(r1,lo)
        hold on
        for i=1:5
            ho=-w(j)*(a4(k)/\Delta2)^n(i).*r1.^(n(i)+1) ...
                +(w(j)-\Delta1)*(a4(k)/\Delta2)^n(i).*r1.^n(i);
        plot(r1,-ho)
        end
        xlabel('r_1'); %ylabel();
        title(sprintf("%s= %s, %s= %s, %s = ...
            %s",'a',num2str(a4(k)),'\rho',num2str(rho),'\omega', ...
            num2str(w(j))));
        hold off
        ylim([min(lo)-2 max(lo)+2])
        lgd=legend('V(r_1)','U(r_1), n=1','U(r_1), n=2','U(r_1), ...
            n=3','U(r_1), n=4','U(r_1), n=5','Location','best');
        lgd.NumColumns = 3;
        l=l+1;
    end
    end
    sgtitle("Intersection(s) of U(r_1)=\omega (a/\\Delta_2)^n ...
    r_1^{n+1}-(\omega - \\Delta_1) (a/\\Delta_2)^n r_1^n and V (r_1)=(\rho+ ...
    \omega - \\Delta_1)- \omega r_1 for varying n")
    end
```

${ }_{120}$ 7.2.2 Code for Chapter 3.4
To output the figures displayed in Chapter 3.4, we call the function CharPolySurfPlotter, which uses the functions CharPolySurf and CharPolyCoeffs in its operation. Varying the parameters choice and coeff and with the other inputs given by Tests=CharPolySurfPlotter , 1, coeff, 1,20, [0 . 1875 3/8],[0 225/1200 450/1200], [2,5,10],[.01 . 05 .1]);,
we obtained the plots.

```
function ...
        Tests=CharPolySurfPlotter(choice, sub, coeff,tester, size,mu1, mu2, \(n\), w)
\%choice: which functional choices for \(f\) and \(g\) to use
\%sub: parameter for plots
\%coeff: which plot to print
\%tester: boolean for returning checks on \(P, Q\), and \(R\)
\%size: number of points to plot
\%mul, mu2, n, z: test values for various parameters
if choice=="1"
    lb(1) ="a";
    lb(2) =" \(\backslash\) rho";
elseif choice == "3"
    lb (1) =" \omega";
    lb (2) =" \(\backslash\) rho";
elseif choice=="2"
    lb(1) ="a";
    lb(2)="\rho";
elseif choice=="4"
    lb(1)="a";
    lb(2)="\rho";
end
\(\mathrm{k}=1\);
figure
for \(i=1: 3\)
    for \(j=1: 3\)
        if \(s u b==1\)
            \([x, y, P, Q, R, \Delta 1, \Delta 2, n 1, w]=C h a r P o l y S u r f(1,1 / 8,1 / 6, \ldots\)
                    \(1 / 120, .3,24.98,12.5,5,0.21, .166,6.66, \ldots\)
                mu1(i), mu2(j), .25, choice, [1.6653 1.249 ...
                22.5], 0, 3000,0,0, size);
            \(\mathrm{xa}=" \backslash \Delta_{-} 1 " ;\)
            \(\mathrm{xv}=\Delta 1\);
            ya=" \(\backslash \Delta_{-} 2 " ;\)
            \(y v=\Delta 2\);
        elseif sub==2
            \([x, y, P, Q, R, \Delta 1, \Delta 2, n 1, w]=C h a r P o l y \operatorname{Surf}(1,1 / 8,1 / 6, \ldots\)
                \(1 / 120, .3,24.98,8.9, n(j), 0.1, .22,6.66, \ldots\)
                mul(i), 0, .25, choice, [1.6653 1.249 22.5], 0, ...
                    3000,0,0, size);
            xa="\} \Delta _ { - 1 } \text { "; }
            \(\mathrm{xv}=\Delta 1\);
            ya="n";
            \(y v=n 1\);
        elseif sub==3
            \([x, y, P, Q, R, \Delta 1, \Delta 2, n 1, w]=C h a r P o l y \operatorname{Surf}(1,1 / 8,1 / 6, \ldots\)
                \(1 / 120, .3,24.98,8.9, n(j), 0.1, .22,6.66,0, \ldots\)
                mu2(i), .25, choice, [1.6653 1.249 22.5], 0, ...
                3000,0,0, size);
```



```
    XV=\Delta2;
```

 XV=\Delta2;
 ya="n";
 ya="n";
 yv=n1;
 yv=n1;
 elseif sub==4
elseif sub==4
[x,Y,P,Q,R,\Delta1,\Delta2,n1,w]=CharPolySurf(1, 1/8, 1/6, ...
[x,Y,P,Q,R,\Delta1,\Delta2,n1,w]=CharPolySurf(1, 1/8, 1/6, ...
1/120, . 3, 24.98, 8.9, n(j), 0.1, z(i), 6.66, 0, ...
1/120, . 3, 24.98, 8.9, n(j), 0.1, z(i), 6.66, 0, ...
0,.25, choice, [1.6653 1.249 22.5], 0, ...
0,.25, choice, [1.6653 1.249 22.5], 0, ...
3000,0,0, size);
3000,0,0, size);
xa="\omega";
xa="\omega";
XV=W;
XV=W;
ya="n";
ya="n";
Yv=n1;
Yv=n1;
end
end
subplot (3, 3,k)
subplot (3, 3,k)
if coeff=='P'
if coeff=='P'
surf (x,Y,P)
surf (x,Y,P)
if choice=="3"
if choice=="3"
xPlane = [x(1, 1) ...
xPlane = [x(1, 1) ...
x(length(x(1,:)), length(x(1,:))) ...
x(length(x(1,:)), length(x(1,:))) ...
x(length(x(1,:)), length(x(1,:))) x(1,1)];
x(length(x(1,:)), length(x(1,:))) x(1,1)];
yPlane1 = \Delta1-xPlane;
yPlane1 = \Delta1-xPlane;
zPlane = [-10000 -10000 10000 10000];
zPlane = [-10000 -10000 10000 10000];
hold on;
hold on;
patch(xPlane, yPlane1, zPlane, 'r', 'FaceAlpha', ...
patch(xPlane, yPlane1, zPlane, 'r', 'FaceAlpha', ...
0.5);
0.5);
hold off
hold off
xlim([x(1,1) x(length(x(1,:)), length(x(1,:)))])
xlim([x(1,1) x(length(x(1,:)), length(x(1,:)))])
ylim([y(1,1) y(length(y(:, 1)), length(y(:,1)))])
ylim([y(1,1) y(length(y(:, 1)), length(y(:,1)))])
zlim([min(min(P, [], 'all'),-10) max(P, [], 'all')])
zlim([min(min(P, [], 'all'),-10) max(P, [], 'all')])
end
end
hold on;
hold on;
patch([x(length(x(1,:)), length(x(1,:))) x(1,1) ...
patch([x(length(x(1,:)), length(x(1,:))) x(1,1) ...
x(1, 1) x(length(x(1,:)), length(x(1,:)))], ...
x(1, 1) x(length(x(1,:)), length(x(1,:)))], ...
[y(length(y(:,1)), length(y(:,1))) ...
[y(length(y(:,1)), length(y(:,1))) ...
y(length(y(:,1)), length(y(:,1))) y(1,1) y(1,1)], ...
y(length(y(:,1)), length(y(:,1))) y(1,1) y(1,1)], ...
[0 0 0 0], 'g', 'FaceAlpha', 0.5);
[0 0 0 0], 'g', 'FaceAlpha', 0.5);
hold off
hold off
xlabel(lb(1)); Ylabel(lb(2)); zlabel(coeff);
xlabel(lb(1)); Ylabel(lb(2)); zlabel(coeff);
title(sprintf('%s= %s, %s= ...
title(sprintf('%s= %s, %s= ...
%s',xa, num2str(xv),ya,num2str (yv)));
%s',xa, num2str(xv),ya,num2str (yv)));
elseif coeff=='Q'
elseif coeff=='Q'
surf(x,Y,Q)
surf(x,Y,Q)
if choice=="3"
if choice=="3"
xPlane = [x(1, 1) ...
xPlane = [x(1, 1) ...
x(length(x(1,:)), length(x(1,:))) ...
x(length(x(1,:)), length(x(1,:))) ...
x(length(x(1,:)), length(x(1,:))) x(1,1)];
x(length(x(1,:)), length(x(1,:))) x(1,1)];
yPlane1 = \Delta1-xPlane;
yPlane1 = \Delta1-xPlane;
zPlane = [-10000 -10000 10000 10000];
zPlane = [-10000 -10000 10000 10000];
hold on;
hold on;
patch(xPlane, yPlane1, zPlane, 'r', 'FaceAlpha', ...
patch(xPlane, yPlane1, zPlane, 'r', 'FaceAlpha', ...
0.5);

```
            0.5);
```



```
                zPlane = [-10000 -10000 10000 10000];
                hold on;
                patch(xPlane, yPlane1, zPlane, 'r', 'FaceAlpha', ...
            0.5);
                hold off
                xlim([x(1,1) x(length(x(1,:)), length(x(1,:)))])
                ylim([y(1,1) y(length(y(:,1)), length(y(:,1)))])
                zlim([min(R, [], 'all') max(R, [], 'all')])
            end
            zlim([0 1])
                xlabel(lb(1)); ylabel(lb(2)); zlabel("PQ/R");
                title(sprintf('%s = %s, %s = ...
        %s',xa,num2str(xv),ya,num2str(yv)));
            end
            if tester==1
            Tests(k,:)=CharPolyCoeffs(x,y,P,Q,R,\Delta1,choice,size);
        else
            Tests=0;
        end
        k=k+1;
    end
    end
    sgtitle("Plots of "+coeff+" for varying "+lb(1)+", "+lb(2)+", ...
    "+xa+", and "+ya+" for case "+choice)
    end
```

```
function [x,y,P,Q,R,\Delta1,\Delta2,n,w]=CharPolySurf(beta, k1, k2, mu3, ...
    gamma, s, theta, n, L, alpha, K, mul, mu2, A, choice, initV, ...
    ts, tf, T, eps, size)
2
%input (beta, k1, k2, mu3, gamma, s, theta, n, L, alpha, K, mu1, ...
    mu2, A, choice, initV, ts, tf, T, eps, size)
% beta - Individual blood regeneration amplifying factor ...
    independent of fractional blood loss
% k1 - Transition rate between R1 and R2 (1/8 in humans)
% k2 - Transition rate between R2 and R3 (1/6 in humans)
% mu3 - Death rate of R3 (1/120 in humans)
% gamma - Individual blood regeneration amplifying factor ...
    dependent on fractional blood loss
% s - Mean steady state value of R3
% theta - Saturation constant for R3 feedback
% n - Sensitivity of feedback with respect to changes in ...
    population size
    % L - Constant growth rate of R1
    % alpha - Logistic growth rate
    % K - Maximum stimulated size of R1 population
    % mul - Natural apoptosis rate of R1
```

```
% mu2 - Natural apoptosis rate of R2
% A - Constant loss from R3
% choice - 1, 2, 3, or 4 for different F and G functions
% initV - Initial value starting conditions
% ts - Time at which to begin simulation
% tf - Time at which to end simulation
% T - Unused time variable
% eps - Unused tolerance
% size - Number of points to plot
%%nondimensional parameters
\Delta1 = (k1+mu1)/mu3;
\Delta2 = (k2+mu2)/mu3;
rho=gamma/(beta*mu3);
a1=(k1*k2*L)/(mu3.^ 3*s);
a2=(k1*k2*K)/(mu3.^2*s);
a3=(k1*k2*L)/(mu3.^ 3*theta);
a4=(k1*k2*K)/(mu3.^2*theta);
w=alpha/mu3;
r11=(rho - \Delta1 + sqrt((rho-\Delta1).^2+4*rho*a1/\Delta2))/(2*rho*a1/\Delta2);
r31=r11*a1/\Delta2;
%initializing arrays
P=zeros(size);
Q=zeros(size);
R=zeros(size);
%linear f constant g
if choice=="1"
    a1_m=160:390/(size-1):550;
    rho_m=1:239/(size-1):240;
    for j=1:size
        for i=1:size
            r11m=(rho_m(i) - \Delta1 + ..
            sqrt((rho_m(i) -\Delta1)^ 2+4*rho_m(i)*al_m(j)/\Delta2))/(2*rho_m(i)*al_m(j)/\Delta2);
            r31m=r11m*a1_m(j)/\Delta2;
            combination=\Delta1 - rho_m(i) + rho_m(i)*r31m;
            P(i,j) = 1+\Delta2 + combination;
            Q(i,j) = \Delta2 + (\Delta2 + 1)*(combination);
            R(i,j) = al_m(j)*rho_m(i)*r11m + \Delta 2*(combination);
        end
    end
    [x,y] = meshgrid(a1_m,rho_m);
%hill-type f, constant g
elseif choice=="2"
    a3_m=330:720/(size-1):1050;
    rho_m=1:239/(size-1):240;
```

```
            P(i,j) = 1+\Delta2 + combination;
            Q(i,j) = \Delta2 + (\Delta2 + 1)*(combination);
            R(i,j) = a **rho_m(i)*r11m + \Delta 2*(combination);
        end
    end
    [x,y] = meshgrid(w_m,rho_m);
    %hill-type f, logistic g
    elseif choice=="4"
    a4_m=90:200/(size-1):290;
    rho_m=1:239/(size-1):240;
    r14m=0;
    for j=1:size
        for i=1:size
        %computing equilibrium point numerically
        poly=zeros(1,n+3);
        poly(1)=-w*(a4_m(j)/\Delta2)^n;
        poly(2)=(w-\Delta1)*(a4_m(j)/\Delta2)^n;
        poly (n+1)=-w;
        poly(n+2)=rho_m(i) +w-\Delta1;
        rooty=roots(poly);
        posrootcount=0;
        for rt=1:n+2
            if real(rooty(rt))>0 && imag(rooty(rt))==0
                r14m=real(rooty(rt));
                posrootcount=posrootcount+1;
            end
            if posrootcount>1
                fprintf('Additional root of %13.2e found at ...
                a=%13.2e and rho = ...
                %13.2e\n',r14m,a4_m(j),rho_m(i));
            end
        end
        if posrootcount ==0 && \Delta1>(rho_m(i)+w) %parameter ...
            range where there is no existence of the ...
            equilibrium point by Descartes
            P(i,j) = NaN;
            Q(i,j) = NaN;
            R(i,j) = NaN;
        else
            r 34m=r14m*a4_m(j)/\Delta2;
            combination=2*w*r14m - w + \Delta1 - rho_m(i)/(1+r34m^n);
            P(i,j) = 1+\Delta2 + combination;
            Q(i,j) = \Delta2 + (\Delta2 + 1)*(combination);
            R(i,j) = a4_m(j)*rho_m(i)*r14m + \Delta 2*(combination);
        end
        end
    end
```

```
169 [x,y] = meshgrid(a4_m,rho_m);
```

```
function tests = CharPolyCoeffs(x,y,P,Q,R, \(\Delta 1\), choice, size)
X=zeros(size);
if choice=="1"
for il=1:size
    for j1=1:size
        if \(P(i 1, j 1)<0 \& \& Q(i 1, j 1)>0 \& \& R(i 1, j 1)<0\)
            X(i1,j1)=1;
        elseif \(P(i 1, j 1)<0\) \&\& \(Q(i 1, j 1)>0 \& \& R(i 1, j 1)>0\)
            X(i1,j1)=2;
        elseif \(P(i 1, j 1)<0\) \&\& \(Q(i 1, j 1)<0\) \&\& \(R(i 1, j 1)<0\)
            X(i1,j1)=3;
        elseif \(P(i 1, j 1)<0\) \&\& \(Q(i 1, j 1)<0\) \&\& \(R(i 1, j 1)>0\)
            X(i1,j1)=4;
        elseif \(P(i 1, j 1)>0 \& \& Q(i 1, j 1)>0 \& \& R(i 1, j 1)<0\)
            X(i1, j1) \(=5\);
        elseif \(P(i 1, j 1) \geq 0\) \&\& \(Q(i 1, j 1) \geq 0\) \&\& \(R(i 1, j 1) \geq 0\)
            X(i1, j1) \(=6\);
        elseif \(P(i 1, j 1)>0\) \&\& \(Q(i 1, j 1)<0 \& \& R(i 1, j 1)<0\)
            X(i1,j1)=7;
        elseif \(P(i 1, j 1)>0 \& \& Q(i 1, j 1)<0 \& \& R(i 1, j 1)>0\)
            X(i1,j1)=8;
        else
            \(X(i 1, j 1)=0 ;\)
        end
    end
end
for i2=0:8
    tests (i2+1) =ismember (i2, X);
end
elseif choice=="3"
for il=1:size
    for j1=1:size
        if \(P(i 1, j 1)<0\) \& \& \(Q(i 1, j 1)>0\) \& \& \(R(i 1, j 1)<0 \& \& \ldots\)
            \(x(i 1, j 1)+y(i 1, j 1)>\Delta 1\)
            X(i1,j1)=1;
        elseif \(P(i 1, j 1)<0 \& \& Q(i 1, j 1)>0 \& \& R(i 1, j 1)>0 \& \& \ldots\)
            \(x(i 1, j 1)+y(i 1, j 1)>\Delta 1\)
            X(i1,j1)=2;
        elseif \(P(i 1, j 1)<0 \& \& Q(i 1, j 1)<0 \& \& R(i 1, j 1)<0 \& \& \ldots\)
            \(x(i 1, j 1)+y(i 1, j 1)>\Delta 1\)
            X(i1,j1)=3;
        elseif \(P(i 1, j 1)<0\) \&\& \(Q(i 1, j 1)<0\) \&\& \(R(i 1, j 1)>0\) \&\&.
            \(x(i 1, j 1)+y(i 1, j 1)>\Delta 1\)
            X(i1,j1)=4;
```

```
1555
elseif P(i1,j1)>0 && Q(i1,j1)>0 && R(i1,j1)<0 && ...
        x(il,j1)+y(i1,j1)>\Delta1 %&& z(il,j1) ==1
            X(i1,j1)=5;
        elseif P(i1,j1)>0 && Q(i1,j1)>0 && R(i1,j1)>0 && ...
            x(i1,j1)+y(i1,j1)>\Delta1 %&& z(i1,j1) ==1
            X(il,j1)=6;
elseif P(i1,j1)>0 && Q(i1,j1)<0 && R(i1,j1)<0 && ...
            x(i1,j1)+y(i1,j1)>\Delta1 %&& z(i1,j1) ==1
            X(i1,j1)=7;
        elseif P(il,j1)>0 && Q(il,j1)<0 && R(il,j1)>0 && ...
            x(i1,j1)+y(i1,j1)>\Delta1 %&& z(i1,j1) ==1
            X(i1,j1)=8;
        elseif x(il,jl)+y(il,j1)\leq\DeltaI
            X(i1,j1)=0;
        else
            X(i1,j1)=9;
        end
    end
end
for i2=0:9
end
elseif choice=="2"
for il=1:size
    for jl=1:size
        if P(il,j1)<0 && Q(i1,j1)>0 && R(il,j1)<0
            X(i1, j1)=1;
        elseif P(il,j1)<0 && Q(il,j1)>0 && R(il,j1)>0
            X(i1,j1)=2;
        elseif P(il,j1)<0 && Q(i1,j1)<0 && R(il,j1)<0
            X(i1,j1)=3;
        elseif P(il,j1)<0 && Q(il,j1)<0 && R(il,j1)>0
            X(il,j1)=4;
        elseif P(il,j1)>0 && Q(i1,j1)>0 && R(il,j1)<0
            X(i1,j1)=5;
        elseif P(il,j1)\geq0 && Q(i1,j1)\geq0 && R(il,j1)\geq0
            X(i1,j1)=6;
        elseif P(il,j1)>0 && Q(il,j1)<0 && R(il,j1)<0
            X(i1, j1)=7;
        elseif P(i1,j1)>0 && Q(i1,j1)<0 && R(i1,j1)>0
            X(i1,j1)=8;
        else
            X(i1,j1)=0;
        end
    end
end
    for i2=0:8
    end
```

```
elseif choice=="4"
    for i1=1:size
    for j1=1:size
        if P(i1,j1)<0 && Q(i1,j1)>0 && R(i1,j1)<0
            X(i1,j1)=1;
        elseif P(i1,j1)<0 && Q(i1,j1)>0 && R(i1,j1)>0
                X(i1,j1)=2;
            elseif P(i1,j1)<0 && Q(i1,j1)<0 && R(i1,j1)<0
                X(i1,j1)=3;
            elseif P(i1,j1)<0 && Q(i1,j1)<0 && R(i1,j1)>0
                X(i1,j1)=4;
            elseif P(il,j1)>0 && Q(il,j1)>0 && R(il,j1)<0
                X(i1,j1)=5;
            elseif P(i1,j1)\geq0 && Q(i1,j1)\geq0 && R(i1,j1)\geq0
            X(i1,j1)=6;
            elseif P(i1,j1)>0 && Q(i1,j1)<0 && R(i1,j1)<0
                    X(i1,j1)=7;
            elseif P(i1,j1)>0 && Q(i1,j1)<0 && R(i1,j1)>0
            X(i1,j1)=8;
            elseif isnan(P(i1,j1))
                X(i1,j1)=0;
            else
            X(i1,j1)=9;
            end
    end
end
for i2=0:9
    tests(i2+1)=ismember(i2,X);
end
end
end
```


7.2.3 Code for Chapter 3.5

The below MATLAB code provides the implicit plot (Figure 3.20) given in Chapter 1645 3.5.

```
\Delta1=15;
\Delta2=20;
f = @(a,rho,omega) \Delta...
    2* (1+\Delta2) + ((1+\Delta2)^ 2*omega-a*rho) *(rho-\Delta1+omega) / (omega+rho*a/\Delta2) +(42+1)*omega.^ 2*
interval = [350 700 12 100 6 40];
fimplicit3(f,interval)
xlabel('a');
ylabel('\rho');
zlabel('\omega');
```

```
xPlane = [l00 350 350 700];
yPlane = [llllll
zPlane = \Delta1-yPlane;
hold on;
patch(xPlane, yPlane, zPlane, 'r', 'FaceAlpha', 0.5);
hold off
xlim([[350 700])
ylim([12 100])
zlim([6 40])
```


7.2.4 Code for Chapters 4 and 5

1670 Code used to output figures showing R_{i} vs. time dynamics as well as 3D plots in Chapters 4 and 5 . Nonzero choices of H for Chapter 5 are given by modification of the third equation, shown in comments.

```
%Adapted from Moiseev Igor (2020). Lorenz attaractor plot ...
    (https://www.mathworks.com/matlabcentral/fileexchange/30066-lorenz-attaractor-plc
    MATLAB Central File Exchange. Retrieved June 28, 2020.
clc;
close all;
clear all;
[R1, R2, R3, T] = RBC(1, 1/8, 1/6, 1/120, .3, 24.98, 12.5, 5, ...
    0.21, . 166, 6.66, 0, 0, . 25, 3, [1.6653 1.249 22.5], 0, 300);
%input (beta, k1, k2, mu3, gamma, s, theta, n, L, alpha, K, mul, ...
    mu2, A, choice, initV, ts, tf)
% beta - Individual blood regeneration amplifying factor ...
    independent of fractional blood loss
% k1 - Transition rate between R1 and R2 (1/8 in humans)
% k2 - Transition rate between R2 and R3 (1/6 in humans)
% mu3 - Death rate of R3 (1/120 in humans)
% gamma - Individual blood regeneration amplifying factor ...
    dependent on fractional blood loss
% s - Mean steady state value of R3
% theta - Saturation constant for R3 feedback
% n - Sensitivity of feedback with respect to changes in ...
    population size
% L - Constant growth rate of R1
% alpha - Logistic growth rate
% K - Maximum stimulated size of R1 population
% mul - Natural apoptosis rate of R1
% mu2 - Natural apoptosis rate of R2
% A - Constant loss from R3
% choice - 1, 2, 3, or 4 for different F and G functions
% initV - Initial value starting conditions
% ts - Time at which to begin simulation
% tf - Time at which to end simulation
```

```
\
    %below are the plots
    % figure
    % plot3(R1,R2,R3);
    % axis equal;
    % grid;
    % title('Solution Curve (1000 days)');
    % xlabel('R_1(x10^{12} cells)'); ylabel('R_2(x10^{12} cells)'); ...
        zlabel('R_3(x10^{12} cells)');
    % figure
    % ...
```



```
    % axis equal;
    % grid;
    % xlabel('R_1 (xl0^{12} cells)'); ylabel('R_2(x10^{12} cells)'); ...
        zlabel('R_3(x10^{12} cells)');
    % title('Solution Curve (1000 days) (Long Term Dynamics Only)');
    figure
    subplot (3,1,1)
    plot(T,R1)
    title('R_1 vs time');
    xlabel('t (days)'); ylabel('R_1(x10^{12} cells)');
    subplot (3,1,2)
plot(T,R2)
    title('R_2 vS time');
    xlabel('t (days)'); ylabel('R_2(x10^{12} cells)');
    subplot (3,1,3)
    plot(T,R3)
    title('R_3 vs time');
    xlabel('t (days)'); ylabel('R_3(xl0^{12} cells)');
    % figure
    % K = [R1,R2,R3];
    % plotmatrix(K)
    %end plot section
    function [x,y,z,t] = RBC(beta, k1, k2, mu3, gamma, s, theta, n, ...
        L, alpha, K, mul, mu2, A, choice, initV, ts, tf, T, eps)
    if nargin<18 %if too few inputs
        error('MATLAB:lorenz:NotEnoughInputs','Not enough input ...
        arguments.');
    end
    if nargin<19 %if correct number of inputs
        eps = 0.0000001;
        T = [ts tf];
    end
    options = odeset('RelTol',eps,'AbsTol',[eps eps eps/10]);
    [T,X] = ode45(@(T,X) F(T, X, beta, k1, k2, mu3, gamma, s, theta, ... 
```

```
        n, L, alpha, K, mu1, mu2, A, choice), T, initV, options);
x = X(:,1);
y = X(:,2);
z = X(:,3);
t=T;
return
end
function dx = F(T, X, beta, k1, k2, mu3, gamma, s, theta, n, L, ...
    alpha, K, mu1, mu2, A, choice)
%choice determines which of the function choices will be utilized
dx = zeros(3,1);
if choice==1
        dx(1) = beta*(L) - beta*(k1+mu1)*X(1) + ...
        X(1)*gamma*(1/s)*(s-X(3));
elseif choice==2
        dx(1) = beta*(L) - beta*(k1+mu1)*X(1) + ...
        X(1)*gamma*((theta.^n)/(theta.^n + X(3).^n));
elseif choice==3
        dx(1) = beta*alpha*X(1)*(1-X(1)/K) - beta*(k1+mul)*X(1) + ...
                X(1)*gamma*(1/s)*(s-X(3));
elseif choice==4
    dx(1) = beta*alpha*X(1)*(1-X(1)/K) - beta*(k1+mul)*X(1) + ...
        X(1)*gamma*((theta.^n)/(theta.^n + X(3).^n));
    end
    dx(2) = (beta)*(k1*X(1) - (k2+mu2)*X(2));
    dx(3) = (beta)*(k2*X(2) - mu3*X(3) );
    %dx(3)=(beta)*(k2*X(2) - mu3*X(3) - A*abs(sin(2*pi*T/60-0)));
    %dx(3)=(beta)*(k2*X(2) - mu3*X(3) - A);
    %%%
    % if mod(T,30)<24
    % dx(3) = (beta)*(k2*X(2) - mu3*X(3) );
    % else
    % dx(3) = (beta)*(k2*X(2) - mu3*X(3) - A);
    % end
    return
    end
```


Bibliography

[1] W. Boyce and R. DiPrima. Elementary Differential Equations and Boundary
[5] H. Hedrich. The Laboratory Mouse. 2nd. Academic Press, 2012. ISBN: 9780123820082.
[6] M. Igor. Lorenz attaractor plot. 2011. URL: https ://www .mathworks . com/ matlabcentral/fileexchange/30066-lorenz-attaractor-plot (visited on $01 / 23 / 2021$).
[7] D. W. Jordan and P. Smith. Nonlinear Ordinary Differential Equations. 4th.
[8] K. Kaushansky et al. Williams Hematology. ISBN: 9780071833011.
[9] M. C. Mackey. "Unified hypothesis for the origin of aplastic anemia and periodic hematopoiesis". In: Blood 51.5 (1978), pp. 941-956. DOI: https://doi. org/10.1182/blood.V51.5.941.941.
[10] M. C. Mackey and L. Glass. "Oscillation and chaos in physiological control systems". In: Science 197.4300 (1977), pp. 287-289. DOI: https://doi.org/ 10.1126/science. 267326 .
[11] H. Meijer. Tutorials on Dynamical Systems software. 2015. URL: https:// wwwhome.ewi.utwente.nl/~meijerhge/software.html (visited on 01/23/2021).

1830
[12] C. N. Ngonghala, G. A. Ngwa, and M. I. Teboh-Ewungkem. "Periodic oscillations and backward bifurcation in a model for the dynamics of malaria transmission". In: Mathematical Biosciences 240.1 (2012), pp. 45-62. DOI: http: //dx.doi.org/10.1016/j.mbs.2012.06.003.
[13] G. Ngwa. "On the Population Dynamics of the Malaria Vector". In: Bulletin of Mathematical Biology 68 (2006), pp. 2161-2189. Doi: https://doi.org/ 10.1007/s11538-006-9104-x.
[14] World Health Organization. World Malaria Report 2020. World Health Organization, 2020. ISBN: 9789240015791.
[15] L. Pujo-Menjouet. "Blood Cell Dynamics: Half of a Century of Modelling".
[17] M. Tetschke et al. "Mathematical Modeling of RBC Count Dynamics after Blood Loss". In: Processes 6.9 (2018). Doi: https://doi.org/10.3390/ pr6090157.
[18] J. J. Thibodeaux. "Modeling erythropoiesis subject to malaria infection". In:
[19] W. A. Woldegerima, M. Teboh-Ewungkem, and G. A. Ngwa. "The Impact of
Recruitment on the Dynamics of an Immune-Suppressed Within-Human-Host Model of the Plasmodium falciparum Parasite". In: Bulletin of Mathematical

1855 【 In: Mathematical Modelling of Natural Phenomena, EDP Sciences 11 (2016), pp. 92-115. DOI: https://doi.org/10.1051/mmnp/201611106.
[16] G. Sallet and A. H. B. Moacyr. "Monotone dynamical systems and some models of Wolbachia in Aedes Aegypti populations". In: Revue Africaine de la Recherche en Informatique et Mathématiques Appliquées 20 (2015), pp. 145-

1845
Mathematical Biosciences 225.1 (2010), pp. 59-67. Dor: https://doi.org/ 10.1016/j.mbs.2010.02.001. Biology 81 (2018), pp. 4564-4619. DOI: https://doi.org/10.1007/s11538- 018-0436-0.

