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Abstract

Red blood cells are one of the most important components of life in humans and
other mammals. Loss of red blood cells has consequences, such as anemia, while
overproduction of red blood cells can also have negative consequences. Losses can
be the result of phlebotomy, parasitemia, or other diseases, and overproduction can
be due to myeloproliferative disorders such as Polycythemia Vera. Red blood cell
dynamics within a human involve several stages of precursor cells before a red blood
cell fully matures to an erythrocyte. Upon perturbation, a feedback mechanism
contingent on loss and level of erythrocytes causes the production of more precur-
sor cells to attempt to return the blood dynamics to equilibrium. We model this
process using a system of nonlinear, deterministic, ordinary differential equations.
Functions describing this feedback, the stem cell recruitment, and the erythrocyte
loss are chosen to examine the system dynamics in different scenarios. Some pa-
rameter choices cause a Hopf bifurcation, demonstrating the sensitivity of blood
dynamics to the selected parameters. Numerical methods are used to display bi-
furcation diagrams and transient dynamics for specific function choices. Methods
of mathematical analysis such as nondimensionalization and proofs of invariance,
positivity, boundedness, and uniqueness for arbitrary functions are given.



Chapter 1

Introduction and Background

Red blood cells are one of the most important components of life in humans and
other mammals. Red blood cells are produced through erythropoiesis [8], a compo-
nent process of hematopoiesis, which develops erythropoietic stem cells into mature5

red blood cells (erythrocytes). In many adult mammals, such as humans, these stem
cells are exclusively produced in the bone marrow, while in others, such as mice,
they are additionally produced in the spleen, especially ewhen there is an increased
demand for red blood cells [5]. Erythropoiesis involves several stages of precursors
as cells develop from stem cells to erythrocytes. Early stages are sensitive to ery-10

thropoietin (EPO), while more mature stages are insensitive to EPO. EPO acts as
a feedback mechanism regulating erythropoiesis by meeting the oxygen demand of
tissues and controlling the production of precursors so that, in a healthy mammal,
the production of red blood cells will be equal to the natural death of red blood
cells through apoptosis. The study of red blood cell dynamics is important due to15

the number of health-related problems associated with red blood cells. For example,
malaria parasitemia can cause blood loss, leading to anemia, while myeloprolifera-
tive disorders such as Polycythemia Vera can cause an overproduction of blood cells
so extreme that phlebotomy may be necessary to mitigate the effects of the disease.
Furthermore, red blood cell dynamics are not only relevant to the study of disease,20

but also the menstrual cycle, where blood loss must be regulated to ensure females
are not anemic.

Red blood cell dynamics present a scenario that can be studied mathematically
to depict the relevant dynamical processes using functional responses. Mackey [9]
provided one of the earliest [15] mathematical approaches to modelling aplastic ane-25

mia and its origin in hematopoietic stem cells. In contrast to myeloproliferative
disorders, aplastic anemia causes insufficient production of blood cells. Together
with Glass [10], Mackey helped establish the legitimacy of mathematical model-
ing as a tool to study dynamical blood diseases. Later work, particularly that of
Fuertinger et al. [4] and Tetschke et al. [17], examine erythropoiesis in more detail30

in specific settings. Fuertinger et al. mathematically explore the situations of recov-
ery after blood donation and adjustment to altitude change, while Tetschke et al.
concentrates on a general erythropoiesis model’s application to Polycythemia Vera.
Thibodeaux [18] and Fonseca and Voit [3] provide mathematical models of erythro-
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poiesis under malaria infection. The former showed that the number of parasites35

produced during the destruction of each erythrocyte has the most significant im-
pact on erythropoiesis and the removal of the toxin hemozoin, used by the parasite
to suppress erythropoiesis, may speed recovery of the erythrocyte population. The
latter compared several frameworks to model erythropoiesis subject to malaria, find-
ing that discrete recursive equations best captured the dynamics at play. The works40

mentioned above provide only a sample of the number of red blood cell diseases
and situations that can be mathematically modeled to elucidate their underlying
dynamics. As such, the development of a generalized mathematical model that can
be applied to consider both different external loss factors and different internal fac-
tors of blood cell production for numerous situations has clear benefits, as previous45

work in this field can be examined through the lens of a single model.
The application of this model to studying malaria parasitemia is particularly

important. According to the 2020 World Malaria Report [14], there were approxi-
mately 409,000 malaria deaths in 2019, with 67% of which were among children aged
under 5 years. Mathematically, the interaction of the malaria parasite within the50

blood is equivalent in form to a predator-prey interaction where the parasite attacks
and infects healthy red blood cells. Like in conventional predator-prey models, the
survival of the malarial parasite is contingent upon the continued existence of red
blood cell prey. A mathematical model examining the dynamics of blood loss under
malaria could help guide medical decisions surrounding the detection of malarial55

anemia.
In this work, we present a generalized mathematical model of erythropoiesis dur-

ing loss. This model allows for the implementation of different functional choices
to model production of erythrocytes, regulatory feedback, and blood loss due to
external factors. This model can be applied to several scenarios with appropriate60

functional choices, such as Polycythemia Vera, malaria, and loss due to menstrua-
tion. Utilization of both mathematical and numerical tools help to illustrate the red
blood cell dynamics of these situations.

1.1 Definitions

1.1.1 Biological Definitions65

• Anemia: A condition in which the body lacks red blood cells.

• Aplastic anemia: A condition in which the body does not produce enough red
blood cells to maintain healthy levels.

• EPO: Erythropoietin, a hormone produced primarily by the kidneys which
plays a key role in the production of red blood cells by stimulating the pro-70

duction of BFU-E cells, CFU-E cells, and some erthryoblasts to respond to
the oxygen demand of tissues.

• Erythrocytes: Synonymous with mature red blood cells.
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• Erythropoiesis: The process of forming mature erythrocytes (a part of hematopoiesis).

• Hematopoiesis: The process of forming blood cells.75

• Malaria: A disease caused by infection by a parasite transmitted by the bite of
infected mosquitoes. The merozoite stage of the malaria parasite grows within
infected red blood cells, ultimately causing the demise of the cell as it bursts
to release more parasites into the blood.

• Myeloproliferative disorders: Disorders which can stimulate the production of80

red blood cells, white blood cells, and platelets.

• Neocytolysis: A physiologic process in which immature erythrocytes are selec-
tively destroyed.

• Phlebotomy: Synonymous with bloodletting.

• Polycythemia vera: The most common myeloproliferative disorder, it causes85

an increase in red blood cell production.

• Red blood cells: The most common blood cell in vertebrates and the primary
means of transporting oxygen to body tissues.

• Reticulocytes: Immature red blood cells without a nucleus

• Stem cell: Cells that can develop into specialized cell types within the body.90

1.1.2 Mathematical Definitions, Terminologies, and Prelim-
inary Material

Definition 1. An ordinary differential equation is an equation involving ordi-
nary derivatives in one variables of an unknown, independent variable, rather than
partial derivatives. [1]95

Theorem 1. Existence and Uniqueness Theorem: For the nth-order system
ẋ = f(x, t), suppose that f is continuous and that ∂fj/∂xi, i, j = 1, 2, . . . , n are
continuous for x ∈ D, t ∈ I, where D is a domain and I is an open interval.
Then if x0 ∈ D and t0 ∈ I, there exists a solution x∗(t), defined uniquely in some
neighbourhood of (x0, t0), which satisfies x∗(t0) = x0. [7]100

Definition 2. A solution to a system of ordinary differential equations ẋ = f(x, t)
with initial condition x(t0) = x0 is unique if there exists only one solution x∗

solving the system with the given conditions. [2]

Definition 3. A solution to a system of ordinary differential equations ẋ = f(x, t)
with initial condition x(t0) = x0 is bounded above if there exists some constant,105

finite vector U such that x(t) < U for all t. Similarly, the same solution is bounded
below if there exists some constant, finite vector L such that L < x(t) for all t. [2]
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Definition 4. A system of ordinary differential equations ẋ = f(x, t) with initial
condition x(t0) = x0 is positively invariant if, for a solution x(t) of the problem,
x(0) ∈ Rn

+ (vectors in Rn with strictly positive components) implies that x(t) ∈ Rn
+110

for all t > 0. [7]

Definition 5. A steady state or equilibrium point of a system of ordinary
differential equations ẋ = f(x, t) with initial condition x(t0) = x0 is a point (xs, ts)
at which f(xs, ts) = 0. [7]

Terminology 1. Nondimensionalization is the removal of physical dimensions115

from an equation or system by a substitution of variables.

Definition 6. The Jacobian matrix J of a system of n ordinary differential
equations ẋ = f(x) = [f1(x), . . . , fn(x)]T evaluated at the equilibrium point x = xc

is the n× n matrix with elements given by Jij = [∂fi(x)
∂xj

]x=xc. [7]

Definition 7. The characteristic polynomial pA(λ) of an n × n matrix A is a120

monic polynomial of degree n defined by pA(λ) = det(A− λI), where I is the n× n
identity matrix. The eigenvalues of A are the roots of pA(λ). [7]

Terminology 2. The stability of an equilibrium point of a system of ordinary dif-
ferential equations is determined by the behavior the solution following a perturbation
away from equilibrium. The stability of an equilibrium point can be classified from125

the eigenvalues of the Jacobian matrix of the system evaluated at that equilibrium
point. For instance, a stable equilibrium corresponds to a Jacobian matrix that has
eigenvalues with all negative real parts. [1]

Definition 8. A bifurcation of a system of ordinary differential equations occurs
at a point where a small change to parameter values of the system causes a sudden130

qualitative change in solution behavior. Local bifurcations change stability proper-
ties of equilibrium points. A Hopf bifurcation occurs at an equilibrium point xh

when a change in parameter values causes an eigenvalue of the Jacobian matrix
corresponding to xh to have zero real part with nonzero imaginary part. [7]

Statement 1. Descartes’ rule of signs states that the number of positive real135

roots of a polynomial p(x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0 is at most the number
of sign changes in the sequence {ai : ai 6= 0} of nonzero coefficients of p(x). The
difference between the actual number of positive real roots of p(x) and the number
of sign changes of the nonzero coefficients is always an even number. If the number
of sign changes is one, there will be one positive real root. Similarly, if there are no140

sign changes, there will be no positive real roots.

Definition 9. A system of differential equations ẋ = f(x) is a monotone system
if x ≤ y implies φt(x) ≤ φt(y) for any t ≥ 0, where φt(x) is the trajectory at t
started from x. [16]

Definition 10. A function x 7→ f(x) is Lipschitz continuous if there exists a145

positive real number L such that ||f(x) − f(y)|| ≤ L||x − y|| for all x and y in the
domain. [2]
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Statement 2. The Routh-Hurwitz Criterion for a degree 3 monic polyno-
mial p(λ) = λ3 + a1λ

2 + a2λ + a3 states that all the roots of p(λ) are negative or
have negative real parts if and only if a1 > 0, a2 > 0, a3 > 0, and a1a2 > a3.150
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Chapter 2

The Mathematical Model and its
Derivation

We present a generalized model describing red blood cell dynamics under blood loss.

2.1 Assumptions155

• The subject is a healthy adult with sufficient iron levels.

• Only the most essential features of erythropoiesis are considered to reduce
model complexity.

• Factors of erythropoiesis vary between individuals and can be accounted for
by parameters.160

• Cells have a constant differentiation rate concerning EPO.

• Stem cells do not have the ability of self-renewal to maintain cell populations.

• EPO feedback and blood plasma regeneration are instant.

• The immature red blood cell stages can be partitioned into two compartments,
EPO-proliferating and non-EPO-proliferating.165

• Cell age and sized can be averaged by application of the law of large numbers.
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2.2 Derivation

Variables Description Units
R1(t) Stage 1 of precursor cells - proliferating with respect

to EPO - at time t
population

R2(t) Stage 2 of precursor cells - not proliferating with re-
spect to EPO - at time t

population

R3(t) Mature erythrocytes at time t population
t Time in days time

(days)

Table 2.1: Description of variables used in the model.

Functional
Forms

Description Units

G(R1) Production of precursor erythrocytes population
/ time

F (R3) Feedback regulating erythropoiesis, dependent on
blood loss

unitless

H(R3) Blood loss due to external factors population
/ time

Table 2.2: Functional forms used in the model.

Parameters Description Units
β Individual blood regeneration amplifying factor unitless
k1, k2 Transition rates between stages 1/time
µ1, µ2, µ3 Apoptosis rates of stages 1/time
γ Blood regeneration amplifying factor 1 / time
R0

1, R0
2, R0

3 Population sizes of R1, R2, R3, respectively, at t = 0 population

Table 2.3: Parameters used in the model.

The generalized system of ordinary differential equations (2.1) and its initial condi-
tions (2.2) are stated and represented with a schematic in Figure 2.1:

Ṙ1 = βG(R1)− βk1R1 − βµ1R1 + γF (R3)R1

Ṙ2 = βk1R1 − βµ2R2 − βk2R2

Ṙ3 = βk2R2 − βµ3R3 −H(R3)

(2.1)
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R1(0) = R0
1

R2(0) = R0
2

R3(0) = R0
3

(2.2)

170

Figure 2.1: Model Schematic

G(R1) represents the natural growth of the stage one precursors - proliferating
with respect to EPO - cells entering the red blood cell line from the bone marrow.
k1R1 represents the maturation and transition of cells from the EPO-proliferating
stage to the non-EPO-proliferating stage. The production of stage one cells is par-175

tially dependent on feedback due to EPO, while the later stages are not. µ1R1 is
the apoptosis rate (natural death rate) of the first stage of precursor cells. F (R3) is
a feedback function which stimulates the production of stage 1 (EPO-proliferating)
precursor cells in the bone marrow when the mature erythrocyte population is low
due to loss. k2R2 represents the maturation of stage two precursors, those not pro-180

liferating with respect to EPO, into mature erythrocytes. µ2R2 is the apoptosis rate
of the second stage of precursors. H(R3) is a function that models additional blood
loss due to external factors such as bloodletting or parasitemia. β and γ vary among
individuals, representing differences in erythropoiesis. A low β value corresponds to
feedback having a larger influence for a longer amount of time. High values of γ,185

meanwhile, correspond to faster regeneration of blood loss, but can drive the system
into oscillatory dynamics.
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2.3 Function Choices

To complete the model (2.1) with initial conditions (2.2) we must define functional
choices F , G, and H that will govern the model dynamics of system (2.1) with (2.2).190

1) Recruitment Function G(R1):

G(R1) models the growth rate of stage 1 precursor cells from the bone marrow.
We require that G satisfy certain properties to guarantee a healthy stable
population of red blood cells.

Proposition 1. For any choice of G(R1), G(R1) is a C1([0,∞)) function such195

that there exists a R∗1 > 0 such that for R1 > R∗1, G(R1) is non-increasing and
for R1 < R∗1, G(R1) is non-decreasing. Additionally, limR1→0+ G(R1) ≥ Γ ≥
limR1→∞G(R1).

Choices of G(R1):

(1) Constant G: G(R1) = L. This choice is utilized by Tetschke et al. [17]200

as a constant rate of committed stem cells transitioning to R1.

(2) Logistic G: G(R1) = αR1(1− R1

K
). A logistic model enables growth rates

to be more dependent on the size of the existing population of R1 cells.

Definition 11. The logistic model is the differential equation dP
dt

=
rP (1 − P

K
), where P is a population, K is the carrying capacity of that205

population, and r the logistic growth rate of the population. [1]

2) Feedback Function F (R3):

For the most part, F (R3) is a negative feedback function which regulates the
production of stage 1 precursor cells (R1) as a result of changes in the size
of the erythrocyte population (R3) in order to ensure a mammal maintains a210

healthy stabilized red blood cell count.

Choices of F (R3):

(1) Linear F : F (R3) = 1 − R3

s
. Tetschke et al. [17] defines this mono-

tonically decreasing choice, where s is the mean steady state erythrocyte
count. Tetschke et al. [17] models red blood cell regeneration after loss in215

the context of the myeloproliferative disorder Polycythemia Vera, which
causes increased red blood cell production. This choice of F allows for
a faster return to the mean steady state erythrocyte count, as F be-
comes negative for sufficiently large R3, which enables a faster return
to equilibrium when R3 is over-saturated, which could occur following220

regeneration.

(2) Hill-type F : F (R3) = θn

θn+R3
n . Mackey and Glass [10] and Mackey [9]

use this hill-type function. This monotonically decreasing function has
adjustable slope an inflection point. The authors anticipated use of n ≤ 5
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for this choice. This feedback function allows for much slower return times225

to equilibrium when compared to the liner F , due to the large tail and
asymptotic behavior towards zero of the function as R3 grows large.

Definition 12. The hill equation has form f(x) = xn

a+xn
, where a and

n are parameters.

Proposition 2. For any choice of F (R3), the following properties hold:230

i) F ′(R3) < 0 for all R3 (F is monotonically decreasing).

ii) limR3→0 F (R3) = 1.

iii) limR3→R∗
3
F (R3) = 0, where R∗3 is the steady state value of the R3 popu-

lation.

Remark 1. In lieu of the fact that F (R3 is a negative feedback function,235

γF (R3)R1 must satisfy the following properties:

i) limR3−→∞ γF (R3)R1 −→ 0

ii) As R1 −→∞ and R3 −→∞, γF (R3)R1 −→ 0

The growth of R1 is O(R−η3 ), where η > 1.

3) External Loss Function H(R3): H is a positive, bounded function which240

models additional loss due to a given situation.

(1) Constant H: H(R3) = A can be used in the case of constant, continuous
loss. The parameter A has units of population/time.

(2) Indicator H: An indicator function may be used for H in the case of a
blood donation or blood letting, where a constant loss occurs over some245

fixed interval of time.

(3) Piecewise-continuous H: More complicated piecewise functions can be
used for H to model blood loss due to the menstrual cycle. An example
of such a piecewise-continuous function is given, where the parameter A
is the same as above:250

H(R3) =

{
0 if (t mod 30) < 24

A else

(4) Sinusoidal H: A sinusoidal H such as H(R3) = A| sin(πt/30)| could also
be used to model blood loss due to the menstrual cycle.

Proposition 3. We assume that H(0) = 0. In the above cases, we have omitted this
requirement, as numerical results (in later chapters) with prudent choices of initial
conditions and parameters show that R3 = 0 does not occur for the choices of H255

given above.
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In the presence of malaria parasitemia, H will be a function of R3 and P , where
P is the load of the parasite forms that infect healthy red blood cells. For this case,
the size of the system would increase to account for the dynamics of the malaria
parasitemia. This will be considered in the future. For the purpose of this thesis,260

we will consider the cases where H = 0 analytically and numerically and consider
the scenarios of H 6= 0 enumerated above numerically. In Chapters 3 and 4 we will
assume H = 0 and consider the following four scenarios of F and G:

F (R3) = 1− R3

s
G(R1) = L (2.3)

F (R3) =
θn

θn +R3
n G(R1) = L (2.4)

F (R3) = 1− R3

s
G(R1) = αR1(1− R1

K
) (2.5)

F (R3) =
θn

θn +R3
n G(R1) = αR1(1− R1

K
) (2.6)

We illustrate the shapes and sensitivity to parameters of these functional forms
in Figure 2.2 with parameters listed in Table 2.4.265

Parameters Description Units
s Mean steady state erythrocyte count population
θ Half-saturation erythrocyte count population
n Sensitivity of feedback w.r.t changes in population

size
unitless

L Constant growth rate for R1 population
/time

α Logistic growth rate 1/time
K Maximum stimulated size of R1 population

Table 2.4: Parameters used in the functional forms.
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Figure 2.2: Both choices of F and both choices of G given above, illustrating sensi-
tivity to parameters.

2.4 Parameter Estimation

2.4.1 Human Parameters and Maximal Variable Sizes

A healthy 75-kg human adult male is known to have a mean steady state count of270

s = 24.98 × 1012 circulating erythrocytes and reticulocytes [8] (p. 482), [4], with
3331×108 cells per kg of body weight [8]. We establish a range of 18×1012 to 31×1012

in Table 2.5 to account for fluctuations in individual numbers due to varying weight
or sex. β and γ reflect the differences in erythropoiesis among individuals, with
β representing the individual blood regeneration amplifying factor independent of275

fractional blood loss and γ representing the individual blood regeneration amplifying
factor dependent on fractional blood loss. In Tetschke et al. [17], a base value of
β = 1 was chosen in the range [0.75,3] and γ = 0.3 in the range (0,2]. A low β
value corresponds to feedback having a larger influence for a longer amount of time.
High values of γ, meanwhile, correspond to faster regeneration of blood loss, but280

can potentially drive the system into oscillatory dynamics.
µ3 = 1/120 represents the average 120 day lifespan of the mature erythrocyte in

humans [8]. k1 = 1/8 and k2 = 1/6 reflect, respectively in humans, the 8 days during
which precursor cells are EPO-proliferating (the duration of stage 1 precursors’
existence) and the subsequent 6 days during which precursor cells are non-EPO-285

proliferating (stage 2 precursors) [17] [8]. µ1 and µ2 represent the apoptosis rate of
the stage 1 and stage 2 precursor cells, respectively, and are assumed to be negligibly
0 in humans by Tetschke et al. [17]. Fuertinger et al. [4], however, suggests that
choices of µ1 as large as 0.35 may be appropriate for CFU-E cells, which we take
into account in the corresponding range of [0,0.35] for µ1. We estimate apoptosis290
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for µ2 to be similar and give an identical range for this parameter.
L is chosen to provide a constant growth rate of stage 1 precursor cells that

will exactly balance the natural death of erythrocytes given by µ3 when there is no
external loss (H = 0) and subsequently no feedback (F = 0) because the erythrocyte
population is at its mean steady state count. This situation corresponds to Ṙ1 =295

Ṙ2 = Ṙ3 = 0 and R3 = s. It implies that L = µ3s, assuming µ1 = µ2 = 0. Using the
established values and ranges for s and µ3 given above, we have that L = 0.21×1012

on [0.15x1012, 0.26x1012]. K represents the maximal stimulated value of stage 1
precursor cells. We estimate the value of K by first considering the model at a
steady state where H = 0, Ṙ1 = Ṙ2 = Ṙ3 = 0, and R3 = s. In this scenario,300

assuming µ1 = µ2 = 0, the relationship R1 = µ3

k1
R3 holds, meaning that we can

compute the mean steady state value of R1 in terms of the given parameter value
of s. Here, we have a calculated mean steady state count of stage 1 precursor cells
in the range of [1.2, 2.07] (x1012 cells). To compute an estimate for the maximal
stimulated value of stage 1 precursor cells, we multiply this range by 4 to produce305

a coarse upper bound for use in the logistic function choice of G(R1). Thus, the
estimated value for K is 6.66x1012 on [4.8, 8.27] (x1012).

We estimate α, the growth rate of the logistic stage 1 precursor growth function
G, from numerical simulation. α = 0.166 on the range [0.05, 0.4] produces results
in which the steady state erythrocyte count value corresponds to the ranges given310

above. Finally, n and θ are chosen based on Mackey and Glass [10] and Mackey [9],
where θ is the half-saturation value and n ≤ 5. We choose n = 5 with a range of (0,
5], and take θ = s/2, since θ is used in the hill-type function choice of F , which is
a function of R3, a variable which has a corresponding mean steady state count as
s. Hence θ = 12.5× 1012 on a range of 9× 1012 to 16× 1012.315

2.4.2 Mouse Parameters and Maximal Variable Sizes

We next discuss relevant parameters for laboratory mice. A healthy adult laboratory
mouse is known to have a mean steady state count of approximately s = 19 × 109

circulating erythrocytes and reticulocytes [5], with 7 − 11 × 1012 cells per liter of320

blood [5]. We establish a range of 11 × 109 to 27 × 109 in Table 2.5 to account for
fluctuations in individual mouse numbers due to varying weight or age. We assume
that β and γ can be kept at the same values as they were for humans, as they
represent individual-level amplification factors. µ3 ∈ [1/52, 1/30] represents the 30-
52 day lifespan of the mature erythrocyte in mice [5]. For k1 and k2 we assume that325

these transition rates will maintain the same ratio with respect to µ3 as in humans,
thus giving k1 ∈ [15/52, 1/2] and k2 ∈ [5/13, 2/3] by the values of µ3 given above.
For µ1 and µ2 we take a baseline value of 0 but maintain the allowable parameter
range to be the same as that of humans, [0, 0.35]. Like in humans, L is chosen from
L = µ3s, using the ranges for s and µ3 given above. Therefore, L = 19/41 × 109

330

on [11/52x109, 9/10x109]. Similarly, K is chosen by K = 4µ3

k1
s, giving 7.7x109 on

[2.93, 12.48] (x109). We assume α remains the same as in the human model. n and
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Human Parameter Ranges
ParameterRange of Val-

ues
Baseline
Value

Dimension Reference

µ1 [0,0.35] 0 1/day Fuertinger et al.
[4]

µ2 [0,0.35] 0 1/day Estimated
µ3 1/120 1/120 1/day Tetschke et al.

[17]
k1 1/8 1/8 1/day Tetschke et al.

[17]
k2 1/6 1/6 1/day Tetschke et al.

[17]
γ (0,2] 0.3 1/day Tetschke et al.

[17]
s [18,31] 24.98 population

(x1012 cells)
Tetschke et al.
[17], Fuertinger
et al. [4]

β [0.75,3] 1 unitless Tetschke et al.
[17]

L [0.15, 0.26] 0.21 population
(x1012 cells)

Tetschke et al.
[17]

θ [9,16] 12.5 population
(x1012 cells)

Mackey [9]

n (0,5] 5 unitless Mackey [9]
α [0.05,0.4] 0.166 1/day Estimated
K [4.8,8.27] 6.66 population

(x1012 cells)
Estimated

Table 2.5: Range and baseline values for parameters and their dimensional units
within a healthy adult human.
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Mouse Parameter Ranges
ParameterRange of Val-

ues
Baseline
Value

Dimension Reference

µ1 [0,0.35] 0 1/day Fuertinger et al.
[4], estimated

µ2 [0,0.35] 0 1/day Estimated
µ3 [1/52, 1/30] 1/41 1/day Hedrich [5]
k1 [15/52, 1/2] 15/41 1/day Estimated
k2 [5/13, 2/3] 20/41 1/day Estimated
γ (0,2] 0.3 1/day Tetschke et al.

[17]
s [11,27] 19 population

(x109 cells)
Hedrich [5]

β [0.75,3] 1 unitless Tetschke et al.
[17]

L [11/52, 9/10] 19/41 population
(x109 cells)

Tetschke et al.
[17]

θ [5.5,13.5] 9.5 population
(x109 cells)

Mackey [9]

n (0,5] 5 unitless Mackey [9]
α [0.05,0.4] 0.166 1/day Estimated
K [2.93, 12.48] 7.7 population

(x109 cells)
Estimated

Table 2.6: Range and baseline values for parameters and their dimensional units
within a healthy mouse.

θ are chosen analogously to the human parameters based on Mackey and Glass [10]
and Mackey [9]. We choose n = 5 with a range of (0, 5], and take θ = s/2, hence
θ = 9.5× 109 on a range of 5.5× 109 to 13.5× 109.335
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Chapter 3

Mathematical Analyses

3.1 Basic Model Properties

3.1.1 Positive Invariance340

Theorem 1. The system (2.1) is positively invariant, that is, for all solutions ~R(t)

of (2.1), if ~R(0) ∈ R3
+, then ~R(t) ∈ R3

+ ∀ t > 0.

Proof. We use the proof technique of Woldegerima et al. [19] and will show that

Ṙ1, Ṙ2, and Ṙ3 are nonnegative at ~R = 0 and on the R1 = 0, R2 = 0, and R3 = 0
planes, in order to demonstrate that the vector field points inward, so no solution345

beginning in R3
+ becomes negative.

When ~R = 0, Ṙ2 = (0)βk1 − (0)βµ2 − βk2(0) = 0 and Ṙ3 = (0)βk2 − (0)βµ3 −
H(0) = 0 (Proposition 3), while Ṙ1 = βG(0) − (0)βk1 − (0)βµ1 + (0)γF (0) =

βG(0) ≥ 0 (Proposition 1). Thus when ~R = 0, R1, R2, and R3 are nondecreasing.
On the R1 = 0 plane, for nonnegative values of R2 and R3, Ṙ1 = βG(0) −350

(0)βk1 − (0)βµ1 + (0)γF (R3) = βG(0) ≥ 0 (Proposition 1). On the R2 = 0 plane,
for nonnegative values of R1 and R3, Ṙ2 = βk1R1 − (0)βµ2 − (0)βk2 = βk1R1 ≥ 0.
On the R3 = 0 plane, for nonnegative values of R1 and R2, Ṙ3 = βk2R2 − (0)βµ3 −
H(0) = βk2R2 ≥ 0 (Proposition 3). Thus the region R3

+ is positively invariant and
attracting for the system (2.1), as we have shown that no solution to (2.1) which355

starts in R3
+ passes out of R3

+.

3.1.2 Positivity of Solutions

Theorem 2. All solutions to (2.1) with initial conditions in R3
+ are positive.

Proof. Let ~R(t) = (R1(t), R2(t), R3(t)) be an arbitrary solution of (2.1) with initial
conditions in R3

+. We proceed by contradiction for each Ri, again using a proof360

technique from Woldegerima et al. [19]. For R1, assume for some t1 > 0, R1(t1) =
0, Ṙ1(t1) < 0, and R2(t) and R3(t) are strictly positive for all t ∈ (0, t1). But
Ṙ1(t1) = βG(0) − (0)βk1 − (0)βµ1R1 + (0)γF (R3) = βG(0) ≥ 0, a contradiction
(Proposition 1). Thus R1(t) > 0 ∀ t ≥ 0. For R2, assume for some t2 > 0,
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R2(t2) = 0, Ṙ2(t2) < 0, and R1(t) and R3(t) are strictly positive for all t ∈ (0, t2).365

But from the second equation of (2.1), Ṙ2(t2) = βk1R1 − (0)βµ2 − (0)βk2 > 0, as
R1(t) > 0, a contradiction. Thus R2(t) > 0 ∀ t ≥ 0. For R3, assume for some t3 > 0,
R3(t3) = 0, Ṙ3(t3) < 0, and R1(t) and R2(t) are strictly positive for all t ∈ (0, t3).
But Ṙ3(t3) = βk2R2− (0)βµ3−H(0) = βk2R2 > 0, a contradiction (Proposition 3).
Thus R3(t) > 0 ∀ t ≥ 0. Thus all solutions to (2.1) with initial conditions in R3

+ are370

positive.

3.1.3 Boundedness of Solutions

Theorem 3. All solutions to (2.1) with initial conditions in R3
+ are bounded.

Proof. Let ~R(t) = (R1(t), R2(t), R3(t)) be an arbitrary solution of (2.1) with initial
conditions in R3

+. We proceed by contradiction for R1 and directly compute the375

bound for R2 and R3, again using a proof technique from Woldegerima et al [19].
For R1, assume that R1(t) is unbounded. Then for any choice of M ∈ R, there exists
some t4 > 0 such that R1(t4) > M and Ṙ1 > 0 in some neighborhood J near t4 by
continuity of the solution. On J , the following inequality holds:

0 < Ṙ1 = βG(R1)− β(k1 + µ1)R1 + γF (R3)R1 ≤ βGM − β(k1 + µ1)R1 + γF (R3)R1

(3.1)
Where GM = max

R1∈R+

G(R1), as G(R1) is positive and bounded by Proposition 1. In380

fact, for the two functional choices for G given in Chapter 2.3, we have:

GM =

{
L if G(R1) = L
αK
4

if G(R1) = αR1(1− R1

K
)

For choice of M sufficiently large, βGM < βk1R1 in J , implying that the
γF (R3)R1 term must be large to achieve the positivity of the expression. How-
ever, by Remark 1, γF (R3)R1 will be driven to zero as R1 −→ ∞, hence (3.1)
cannot be positive, a contradiction. Thus R1 is bounded.385

For R2, we refer to the second equation of (2.1), and denote the upper bound of
R1(t) as A1. The following inequality arises:

Ṙ2 = βk1R1 − β(k2 + µ2)R2 ≤ βk1A1 − β(k2 + µ2)R2 (3.2)

Using a proof technique of Woldegerima et al [19], we solve the differential equation
presented in (3.2) to obtain the following inequality:

R2(t) ≤ k1A1

(k2 + µ2)
+ C1e

−β(k2+µ2)t (3.3)

C1 is a positive constant determined by the chosen initial conditions on (2.1). Re-390

gardless of the value of C1, as t goes to infinity, the limit supremum of R2(t) is
bounded above by k1A1

(k2+µ2)
. Thus R2 is bounded; we denote its upper bound as A2.
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For R3, the third equation of (2.1) and the positivity and boundedness of H give
rise to the following inequality:

Ṙ3 = βk2R2 − βµ3R3 −H(R3) ≤ βk2A2 − βµ3R3 (3.4)

Solving the differential equation in (3.4) gives the inequality:395

R3(t) ≤ k2A2

µ3

+ C2e
−βµ3t (3.5)

C2 is a positive constant determined by the chosen initial conditions on (2.1). Re-
gardless of the value of C2, as t goes to infinity, the limit supremum of R3(t) is

bounded above by k2A2

µ3
. Thus R3 is bounded and all solutions ~R(t) of (2.1) with

initial conditions in R3
+ are bounded.

3.1.4 Uniqueness of Solutions400

Theorem 4. All solutions to (2.1) with initial conditions in R3
+ are unique.

Proof. Denote ~Φ(R1, R2, R3) = Ṙ from (2.1). Every function with bounded first

partial derivatives is Lipschtiz. The partial derivatives of ~Φ are as follows:

∂~Φ

∂R1

= (βG′(R1)− βk1 − βµ1 + γF (R3), βk1, 0)T

∂~Φ

∂R2

= (0, −βk2 − βµ2, βk2)T

∂~Φ

∂R3

= (γR1F
′(R3), 0, −βµ3 −H ′(R3))T

(3.6)

Using the infinity norm, we have:

|| ∂
~Φ

∂R1

||∞ = max
~R
|βG′(R1)− βk1 − βµ1 + γF (R3), βk1|

But as F (R3) ≤ 1 and, for the two functional choices for G given in Chapter 2.3405

we have:

G′(R1) =

{
0 if G(R1) = L

α− 2αR1

K
if G(R1) = αR1(1− R1

K
)

We see that G′(R1) is bounded since we have shown that R1(t), R2(t), and R3(t)

are positive and bounded, therefore || ∂~Φ
∂R1
||∞ is finite. Clearly ∂~Φ

∂R2
is bounded as it

is a constant vector. Finally, we have:

|| ∂
~Φ

∂R3

||∞ = max
~R
|γR1F

′(R3),−βµ3 −H ′(R3)|
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For the choices of H given in Chapter 2.3, H ′ is certainly bounded, as constant410

functions and the sine function have bounded derivatives. The derivatives of the
choices of F given in Chapter 2.3 are:

F ′(R3) =

{
−1
s

if F (R3) = 1− R3

s

− θnnR3
n−1

(θn+R3
n)2 if F (R3) = θn

θn+R3
n

As R3 is positive and bounded, F ′(R3) is also bounded, hence || ∂~Φ
∂R3
||∞ is fi-

nite. Therefore the partial derivatives of ~Φ are bounded. Thus (2.1) is Lipschitz
continuous, and therefore by the existence and uniqueness theorem has a unique415

solution.

3.1.5 Monotonicity

Theorem 5. The system (2.1) is not a monotone system.

Proof. If the Jacobian matrix of a system is a Metzler matrix, then that system is
monotone [16]. A Metzler matrix is a matrix with all non-diagonal terms nonnega-420

tive. The Jacobian matrix of (2.1) is given in (3.7):

J(R1, R2, R3) =

βG′(R1)− βk1 − βµ1 + γF (R3) 0 γF ′(R3)R1

βk1 −βk2 − βµ2 0
0 βk2 −βµ3 −H ′(R3)


(3.7)

Since F (R3) is monotonically decreasing (Proposition 2), we know F ′(R3) < 0,
hence the top right entry in the Jacobian matrix is negative. Therfore the Jacobian
is not a Metzler matrix, so (2.1) is not a monotone system.

425

3.2 Nondimensionalization

We nondimensionalize the system (2.1) to give a more complete understanding of
the system by reducing the number of parameters. For each of the four scenarios for
F and G presented in Section 2.3, we seek to find appropriate values of T0, A, B,
and C such that the variables τ , r1, r2, and r3 given in (3.8) are unitless and reduce430

the number of parameters in the system (2.1).

τ =
t

T0

, r1 =
R1

A
, r2 =

R2

B
, r3 =

R3

C
(3.8)

Substituting from the expressions in (3.8), the system (2.1) is transformed into
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(3.9).

A

T0

dr1

dτ
= βG(Ar1)− βk1Ar1 − βµ1Ar1 + γF (Cr3)Ar1

B

T0

dr2

dτ
= βk1Ar1 − βµ2Br2 − βk2Br2

C

T0

dr3

dτ
= βk2Br2 − βµ3Cr3 −H(Cr3)

(3.9)

Further algebraic manipulation of the system in (3.9) yields (3.10).

dr1

dτ
= β

T0

A
G(Ar1)− βk1T0r1 − βµ1T0r1 + γF (Cr3)T0r1

dr2

dτ
=
βk1AT0

B
r1 − βµ2T0r2 − βk2T0r2

dr3

dτ
=
βk2BT0

C
r2 − βµ3T0r3 −

T0

C
H(Cr3)

(3.10)

We nondimensionalize time by scaling by the lifespan of the mature red blood435

cell, that is, by taking T0 = 1
βµ3

. Plugging this value of T0 into the system (3.10)

yields (3.11).

dr1

dτ
=

1

Aµ3

G(Ar1)− k1

µ3

r1 −
µ1

µ3

r1 +
γ

βµ3

F (Cr3)r1

dr2

dτ
=
k1A

µ3B
r1 −

µ2

µ3

r2 −
k2

µ3

r2

dr3

dτ
=
k2B

µ3C
r2 − r3 −

1

βµ3C
H(Cr3)

(3.11)

Letting B = k1A
µ3

and defining the nondimensional parameters δ1, δ2, ρ, and a as

in (3.14), the system (3.11) can be further simplified to (3.12).

ṙ1 =
1

Aµ3

G(Ar1)− δ1r1 + ρF (Cr3)r1

ṙ2 = r1 − δ2r2

ṙ3 = ar2 − r3 −
1

βµ3C
H(Cr3)

(3.12)

Referencing each of the cases given in Section 2.3, we determine values for A440

and C that further reduce the number of parameters in use. These values result in
unitless functions f , g, and h, which are rescalings of F , G, and H. These choices
are summarized in (3.13), where ω is given in (3.14).
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f(r3) =

{
1− r3 C = s

1
1+rn3

C = θ
g(r1) =

{
1 A = L

µ3

ωr1(1− r1) A = K
h(r3) =

1

Cβµ3

H(Cr3)

(3.13)

δ1 =
k1 + µ1

µ3

δ2 =
k2 + µ2

µ3

ρ =
γ

βµ3

ω =
α

µ3

(3.14)

a =



k1k2L
µ3

3s
if f(r3) = 1− r3 and g(r1) = 1

k1k2L
µ3

3θ
if f(r3) = 1

1+rn3
and g(r1) = 1

k1k2K
µ2

3s
if f(r3) = 1− r3 and g(r1) = ωr1(1− r1)

k1k2K
µ2

3θ
if f(r3) = 1

1+rn3
and g(r1) = ωr1(1− r1)

Then, finally, the original system (2.1) is transformed to the unitless system in
(3.15) through nondimensionalization:445

ṙ1 = g(r1)− δ1r1 + ρf(r3)r1

ṙ2 = r1 − δ2r2

ṙ3 = ar2 − r3 − h(r3)

(3.15)

With initial conditions given by (3.16):

r1(0) =
R0

1

A
= r0

1

r2(0) =
R0

2µ3

k1A
= r0

2

r3(0) =
R0

3

C
= r0

3

(3.16)

By (3.13), the nondimensionalized forms of (2.3), (2.4), (2.5), and (2.6), respec-
tively, are restated as follows:

f(r3) = 1− r3 g(r1) = 1 h(r3) = 0 (3.17)

f(r3) =
1

1 + rn3
g(r1) = 1 h(r3) = 0 (3.18)

f(r3) = 1− r3 g(r1) = ωr1(1− r1) h(r3) = 0 (3.19)
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f(r3) =
1

1 + rn3
g(r1) = ωr1(1− r1) h(r3) = 0 (3.20)

In Table 3.1 we state the new, nondimensionalized parameters for the parameters
given in Table 2.5.450

Nondimensionalized Human Parameter Ranges
Parameters Range of Values Baseline Value

δ1 [15, 57] 15
δ2 [20, 62] 20
ρ [0, 240] 36
ω [6, 48] 19.92
n (0, 5] 5
a (in the case of (3.17)) [174.19, 520] 302.64
a (in the case of (3.18)) [337.5, 1040] 604.8
a (in the case of (3.19)) [46.45, 137.83] 79.98
a (in the case of (3.20)) [90, 275.67] 159.84

Table 3.1: Ranges and baseline values for the nondimensional parameters for a
healthy adult human, using Table 2.5 and Chapter 3.2.

3.3 Existence of Steady States when H = 0

For each of the below cases, we seek to find the steady state values ~r∗ = (r∗1, r
∗
2, r
∗
3)

of the nondimensionalized system (3.15) for specific choices of f and g with h = 0.
Ultimately, this results in solving the system of equations:

0 = g(r∗1)− δ1r
∗
1 + ρf(r∗3)r∗1

0 = r∗1 − δ2r
∗
2

0 = ar∗2 − r∗3
(3.21)

The last two equations in (3.21) yield the equality (3.22) regardless of choice of455

f and g.

r∗3 = ar∗2 =
a

δ2

r∗1 r∗2 =
1

δ2

r∗1 (3.22)

Substitution of the relationship (3.22) into the system at equilibrium (3.21) re-
duces the problem of finding a steady state ~r∗ for the system (3.15) to the solution
of the single variable problem given in (3.23).

0 = g(r∗1)− δ1r
∗
1 + ρf(

a

δ2

r∗1)r∗1 (3.23)
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3.3.1 Existence of Case 1: Linear F , Constant G460

In this case we have f(r3) = 1− r3 and g(r1) = 1. Substitution into (3.23) yields:

1− δ1r
∗
1 + ρ(1− a

δ2

r∗1)r∗1 = 1 + (ρ− δ1)r∗1 −
ρa

δ2

(r∗1)2 = 0 (3.24)

In all scenarios, there is only one positive steady state, where r∗1 given by (3.25)
and ~r∗ is given in (3.26) by use of (3.22).

r1
∗ =

ρ− δ1 +
√

(ρ− δ1)2 + 4ρ a
δ2

2ρ a
δ2

(3.25)

~r∗ = (r∗1, r
∗
2, r
∗
3) = (ρ− δ1 +

√
(ρ− δ1)2 + 4ρ

a

δ2

)(
1

2ρ a
δ2

,
1

2ρa
,

1

2ρ
) (3.26)

We summarize the existence result for this case in Theorem 6 below.

Theorem 6. Existence of Steady State for Case 1:465

The system (3.15) together with initial conditions (3.16) and functional choices
(3.17) has a unique, positive steady state for all positive parameter values, defined
by (3.26) as:

~r∗ = (r∗1, r
∗
2, r
∗
3) = (ρ− δ1 +

√
(ρ− δ1)2 + 4ρ

a

δ2

)(
1

2ρ a
δ2

,
1

2ρa
,

1

2ρ
)

3.3.2 Existence of Case 2: Hill-type F , Constant G

In this case we have f(r3) = 1
1+rn3

and g(r1) = 1. Substitution into (3.23) yields:470

1− δ1r
∗
1 + ρ

1

1 + ( a
δ2
r∗1)n

r∗1 = 0 (3.27)

Rearrangement of terms transforms (3.27) to (3.28).

−δ1

(
a

δ2

)n
r1
n+1 +

(
a

δ2

)n
r1
n + (ρ− δ1) r1 + 1 = 0 (3.28)

For positive-integer-valued n, Descartes’ rule of signs implies that (3.28) will
have exactly 1 positive real root if (ρ − δ1) > 0. Otherwise, (3.28) could have 1 or
3 positive real roots. We summarize this result for this case in Theorem 7 below.

Theorem 7. Existence of Steady State for Case 2:475

A necessary condition for the system (3.15) together with initial conditions (3.16)
and functional choices (3.18) to have exactly one positive steady state is (ρ−δ1) > 0.
If (ρ− δ1) ≤ 0, there are either one or three positive steady states.
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To understand which parameter values cause r∗1 to fall within the ranges given by
our nondimensionalized human parameter choices from Table 3.1 and to determine480

behavior when (ρ−δ1) ≤ 0, we generate several plots in MATLAB for varying choices
of the human parameters n, a, and ρ. Results for mice follow analogously. Finding
r∗1 by finding the roots of the polynomial given in (3.28) is equivalent to finding

the intersection point or points of the graphs of U(r1) = δ1

(
a
δ2

)n
r1
n+1 −

(
a
δ2

)n
r1
n

and V (r1) = (ρ − δ1)r1 + 1. Graphically we can see the existence of r∗1 within the485

determined ranges in Figure 3.1.

Figure 3.1: Graphs showing the intersection points of U and V for varying human
parameter values of n, a, and ρ to demonstrate the existence of r∗1 for case 2: hill-type
f , constant g.

Further numerical analysis indicates that at most 1 root will exist for (ρ−δ1) ≤ 0
within the biologically feasible ranges for r1 given by the parameter choices. As can490

be seen in the bottom right of Figure 3.1, for certain parameter values - in this case
a = 700, ρ = 100, n = 5, r∗1 is not in the desired range - U and V do not intersect
within the desired domain of r1.

Remark 2. For the parameters given in Tables 2.5 and 2.6, the system (3.15)
together with initial conditions (3.16) and functional choices (3.18) has exactly one495

positive steady state.

3.3.3 Existence of Case 3: Linear F , Logistic G

In this case we have f(r3) = 1− r3 and g(r1) = ωr1(1− r1). Substitution into (3.23)
yields:

ωr∗1(1− r∗1)− δ1r
∗
1 + ρ(1− a

δ2

r∗1)r∗1 = 0 (3.29)
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=⇒ r∗1 = 0 or r1
∗ =

ρ− δ1 + ω

ω + ρ a
δ2

if (ρ− δ1 + ω) > 0

There is always a trivial steady state ~r∗ = (0, 0, 0), corresponding to r∗1 = 0. If500

(ρ− δ1 + ω) > 0, there is also a positive steady state given by (3.30), using (3.22).

~r∗ = (r∗1, r
∗
2, r
∗
3) = (

ρ− δ1 + ω

ω + ρ a
δ2

)(1,
1

δ2

,
a

δ2

) (3.30)

We summarize the existence result for this case in Theorem 8 below.

Theorem 8. Existence of Steady State for Case 3:
The system (3.15) together with initial conditions (3.16) and functional choices

(3.19) has a trivial steady state for all positive parameter values and a unique, pos-505

itive steady state given by (3.30) and restated below exactly when (ρ− δ1 + ω) > 0.

~r∗ = (r∗1, r
∗
2, r
∗
3) = (

ρ− δ1 + ω

ω + ρ a
δ2

)(1,
1

δ2

,
a

δ2

)

Remark 3. The trivial steady state given in Theorem 8 corresponds to death in the
mammal and biologically is a steady state that is undesirable for the system to be at.

3.3.4 Existence of Case 4: Hill-type F , Logistic G

In this case we have f(r3) = 1
1+rn3

and g(r1) = ωr1(1− r1). Substitution into (3.23)510

yields:

ωr∗1(1− r∗1)− δ1r
∗
1 + ρ

1

1 + ( a
δ2
r∗1)n

r∗1 = 0 (3.31)

Rearrangement of terms transforms (3.31) to (3.32).

−ω
(
a

δ2

)n
r1
n+2 + (ω − δ1)

(
a

δ2

)n
r1
n+1 − ωr1

2 + (ρ+ ω − δ1)r1 = 0 (3.32)

For positive-integer-valued n, Descartes’ rule of signs implies that (3.32) will
have 1 or 3 positive real roots if (ω−δ1) > 0. In the case of δ1 > ω and (ρ+ω) > δ1,
(3.32) will have 1 positive real root. In the case of δ1 ≥ (ρ+ ω), (3.32) will have no515

positive real roots. We summarize this result for this case in Theorem 9 below.

Theorem 9. Existence of Steady State for Case 4:
The system (3.15) together with initial conditions (3.16) and functional choices

(3.20) has a trivial steady state for all positive parameter values.
A necessary condition for the system (3.15) together with initial conditions (3.16)520

and functional choices (3.20) to have at least one positive steady state is δ1 < (ρ+ω).
If, in addition to δ1 < (ρ + ω), both δ1 > ω and (ρ + ω) > δ1 are satisfied, then
there will be exactly one positive steady state. On the other hand, if (ω − δ1) > 0 in
addition to δ1 < (ρ+ ω), then there are either one or three positive steady states. If
δ1 ≥ (ρ+ ω), there are no positive steady states.525
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Factoring out r∗1 from (3.32), we see that further roots correspond to the in-

tersection points of the graphs of U(r1) = ω
(
a
δ2

)n
r1
n+1 − (ω − δ1)

(
a
δ2

)n
r1
n and

V (r1) = −ωr1 + (ρ+ ω − δ1). We generate several plots in MATLAB in figures 3.2,
3.3, and 3.4 to explore the existence of the intersection points of the graphs of U and
V for varying choices of n, ω, ρ, and a given by Table 3.1. In certain cases, U and530

V do not intersect within the desired domain of r1. However, we see that in figures
3.2, 3.3, and 3.4, for the ideal human parameter values, given in the center panel
of each figure, intersection points exist in the desired domain. Further numerical
analysis indicates that, given the established parameter ranges, at most one root
will exist with the biologically feasible ranges for r1 given by the parameter values535

for all other parameter choices given within their respective ranges. Therefore, a
situation with 3 positive real roots will never arise in practice.

Remark 4. For the parameters given in Tables 2.5 and 2.6, the system (3.15)
together with initial conditions (3.16) and functional choices (3.20) has either one
or zero positive steady states.540

Figure 3.2: Graphs showing the intersection points of U and V for varying human
parameter values of n, a, and ρ with ω constant to demonstrate the existence of r∗1
for case 4: hill-type f , logistic g.
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Figure 3.3: Graphs showing the intersection points of U and V for varying human
parameter values of n, ω, and ρ with a constant to demonstrate the existence of r∗1
for case 4: hill-type f , logistic g.

Figure 3.4: Graphs showing the intersection points of U and V for varying human
parameter values of n, a, and ω with ρ constant to demonstrate the existence of r∗1
for case 4: hill-type f , logistic g.
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3.4 Stability of Steady States when H = 0

For each of the below cases, we seek to find the stability of the nontrivial steady550

state values ~r∗ = (r∗1, r
∗
2, r
∗
3) determined in Chapter 3.3 of the nondimensionalized

system (3.15). Much of our stability analysis can be done through examination of
the Jacobian matrix and the characteristic polynomial of the nondimensionalized
system (3.15). The Jacobian matrix is presented in (3.33) while the characteristic
polynomial is given in (3.34).555

J(r1, r2, r3) =

g′(r1)− δ1 + ρf(r3) 0 ρf ′(r3)r1

1 −δ2 0
0 a −1− h′(r3)

 (3.33)

p(λ) = −aρf ′(r∗3)r∗1 − (δ2 + λ)(1 + h′(r∗3) + λ)(g′(r∗1)− δ1 + ρf(r∗3)− λ) (3.34)

We rewrite (3.34) in the form given in (3.35), where P , Q, and R give the
coefficients of the nondimensional characteristic polynomial.

λ3 + Pλ2 +Qλ+R

P = (1 + h′(r∗3) + δ2 − g′(r∗1) + δ1 − ρf(r∗3))

Q = (δ2(1 + h′(r∗3)) + (δ2 + 1 + h′(r∗3))(−g′(r∗1) + δ1 − ρf(r∗3)))

R = (−aρf ′(r∗3)r∗1 + δ2(1 + h′(r∗3))(−g′(r∗1) + δ1 − ρf(r∗3))) (3.35)

If the coefficients P , Q, and R satisfy the Routh-Hurwitz Criterion (2) for a spe-
cific choice of f , g, and h at a specific steady state ~r∗, then ~r∗ is a stable equilibrium
point of the nondimensional system (3.15).560

Alternatively, if there is a trivial equilibrium point ~r∗ = (0, 0, 0), as seen in
chapters 3.3.3 and 3.3.4, we may simply use the nondimensional Jacobian matrix
(3.33) to determine stability. When ~r∗ = 0, J is the lower triangular matrix given in
(3.36), hence its eigenvalues are just its diagonal entries. If all these diagonal entries
are negative, the origin will be a stable steady state, otherwise it will be unstable.565

J(0, 0, 0) =

g′(0)− δ1 + ρ 0 0
1 −δ2 0
0 a −1− h′(0)

 (3.36)

For each of the cases below we utilize analytic techniques or MATLAB to deter-
mine the sign of P , Q, and R and if PQ > R for the nontrivial equilibrium points
found in Chapter 3.3 for varying human parameter choices within the ranges given
in Table 3.1 to learn more about the stability of that point. Results for mice follow
analogously. For use in our model, stable equilibrium points are the most important.570

The stability of these points will also play into later bifurcation analysis.
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3.4.1 Stability of Case 1: Linear F , Constant G

In this case we have f(r3) = 1 − r3 and g(r1) = 1. From Chapter 3.3.1, we recall

that r3
∗ =

ρ−δ1+
√

(ρ−δ1)2+4ρ a
δ2

2ρ
and r∗1 = δ2

a
r∗3. For all positive parameter choices, r∗1

and r∗3 are positive. Substitution into (3.35) yields:575

P = (1 + δ2 + δ1 − ρ+ ρr∗3)

Q = (δ2 + (δ2 + 1)(δ1 − ρ+ ρr∗3))

R = (aρr∗1 + δ2(δ1 − ρ+ ρr∗3)) (3.37)

Notice that δ1− ρ+ ρr∗3 = δ1− ρ+
ρ−δ1+

√
(ρ−δ1)2+4ρ a

δ2

2
= δ1−ρ

2
+

√
(δ1−ρ)2+4ρ a

δ2

2
> 0

since
√

(δ1 − ρ)2 + 4ρ a
δ2
> |δ1 − ρ| as the parameters are positive. Therefore P ,

Q, and R are all strictly positive for relevant parameter choices. For PQ > R, we
consult MATLAB and see that this condition holds for all parameter values given
by Table 3.1. See the code given in the Appendix. Therefore the equilibrium point580

computed in Chapter 3.3.1 is a stable steady state for all relevant parameter values
as the Routh-Hurwitz Criterion are satisfied.

In figures 3.5, 3.6, and 3.7 we generate plots of the expressions for P , Q, and
R given in (3.37) in MATLAB for varying values of the parameters δ1, δ2, ρ, and
a. We notice that, in these figures, increasing δ2 increases the distance from the 0585

plane, while changing δ1 impacts the asymptotic behavior for small values of ρ.

Figure 3.5: For case 1: linear f , constant g, the surface P is plotted as a function
of varying δ1, δ2, ρ, and a. For all values, the surface P lies above the green plane
representing P = 0.
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Figure 3.6: For case 1: linear f , constant g, the surface Q is plotted as a function
of varying δ1, δ2, ρ, and a. For all values, the surface Q lies above the green plane
representing Q = 0.590

Figure 3.7: For case 1: linear f , constant g, the surface R is plotted as a function
of varying δ1, δ2, ρ, and a. For all values, the surface R lies above the green plane
representing R = 0.

3.4.2 Stability of Case 2: Hill-type F , Constant G

In this case we have f(r3) = 1
1+rn3

and g(r1) = 1. Substitution into (3.35) yields:
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P = (1 + δ2 + δ1 − ρ
1

1 + r∗3
n

)

Q = (δ2 + (δ2 + 1)(δ1 − ρ
1

1 + r∗3
n

))

R = (aρ
nr∗3

n−1

(r∗3
n + 1)2 r

∗
1 + δ2(δ1 − ρ

1

1 + r∗3
n

)) (3.38)

We generate plots of the expressions for P , Q, and R given in (3.38) in MATLAB595

for varying values of the parameters δ1, δ2, ρ, and a to determine the signs of
these values. From figures 3.8, 3.9, and 3.10, we see that P , Q, and R are all
strictly positive for relevant parameter choices. This means that the characteristic
polynomial for this case has no positive real roots. However, to determine the
stability of the equilibrium point computed in Chapter 3.3.2, we also must examine600

the inequality PQ > R. In Figure 3.11 we plot PQ/R for varying values of the
parameters δ1, δ2, ρ, and a. If the surface PQ/R lies in the range [0,1], we have
PQ < R and hence the Routh-Hurwitz Criterion are not satisfied. We notice that for
small values of δ1 and large values of ρ, the surface falls into this range. Therefore,
choice of parameters with the ranges given by Table 3.1 can drive the equilibrium605

away from being stable. From figures 3.8, 3.9, and 3.10, we note that, like the
previous case, in these figures, increasing δ2 increases the distance from the 0 plane,
while changing δ1 impacts the asymptotic behavior for small values of ρ.

Figure 3.8: For case 2: hill-type f , constant g, the surface P is plotted as a function
of varying δ1, δ2, ρ, and a. For all values, the surface P lies above the green plane
representing P = 0.610
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Figure 3.9: For case 2: hill-type f , constant g, the surface Q is plotted as a function
of varying δ1, δ2, ρ, and a. For all values, the surface Q lies above the green plane
representing Q = 0.

Figure 3.10: For case 2: hill-type f , constant g, the surface R is plotted as a function
of varying δ1, δ2, ρ, and a. For all values, the surface R lies above the green plane
representing R = 0.
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Figure 3.11: For case 2: hill-type f , constant g, the surface PQ/R is plotted as a
function of varying δ1, δ2, ρ, and a. We restrict the z-axis range to [0,1]. For some
parameter values (first row), larger values of ρ cause the surface to be within this
range, indicating that PQ < R, so the corresponding equilibrium point is not stable.

3.4.3 Stability of Case 3: Linear F , Logistic G

In this case we have f(r3) = 1 − r3 and g(r1) = ωr1(1 − r1). We represent the
nontrivial equilibrium point by ~r∗ = (r∗1, r

∗
2, r
∗
3) and recall that r∗1 = ρ−δ1+ω

ω+ρ a
δ2

and

r∗3 = a
δ2
r∗1 with existence only when (ρ− δ1 +ω) > 0. Substitution into (3.35) yields:620

P = (1 + δ2 + 2ωr∗1 − ω + δ1 − ρ+ ρr∗3)

Q = (δ2 + (δ2 + 1)(2ωr∗1 − ω + δ1 − ρ+ ρr∗3))

R = (aρr∗1 + δ2(2ωr∗1 − ω + δ1 − ρ+ ρr∗3)) (3.39)

Notice that 2ωr∗1 − ω + δ1 − ρ + ρr∗3 = −(ρ − δ1 + ω) + 2ωr∗1 + ρ a
δ2
r∗1 = −(ρ −

δ1 + ω) + (2ω + ρ a
δ2

)r∗1 = −r∗1(ω + ρ a
δ2

) + (2ω + ρ a
δ2

)r∗1 = ωr∗1. Therefore, P , Q, and
R may be simplified considerably to (3.40).

P = 1 + δ2 + ωr∗1
Q = δ2 + (δ2 + 1)ωr∗1
R = aρr∗1 + δ2ωr

∗
1

(3.40)

As we required (ρ− δ1 + ω) > 0 and positive parameter values for the existence
of r∗1 and r∗3, it follows that r∗1 > 0 and r∗3 > 0. Therefore P , Q, and R are all strictly625

positive for relevant parameter choices. For PQ > R, we observe the plot of PQ/R
for varying values of the parameters δ1, δ2, ρ, and ω given in Figure 3.12. If the
surface PQ/R lies in the range [0,1], we have PQ < R and hence the Routh-Hurwitz
Criterion are not satisfied. We notice that for small values of δ1 and δ2 and large
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values of ρ, the surface falls into this range. Therefore, choice of parameters with630

the ranges given by Table 3.1 can drive the nontrivial equilibrium point computed
in Chapter 3.3.3 away from being stable.

In figures 3.13, 3.14, and 3.15, we generate plots of the expressions for P , Q, and
R given in (3.39) in MATLAB for varying values of the parameters δ1, δ2, ρ, and ω.
We also plot the condition (ρ− δ1 + ω) > 0 to make clear which parameter choices635

result in a viable equilibrium point. We note that, like in the preceding cases, in
these figures, increasing δ2 increases the distance from the 0 plane, while changing
δ1 impacts the asymptotic behavior for small values of ρ.

Figure 3.12: For case 3: linear f , logistic g, the surface PQ/R is plotted as a function
of varying δ1, δ2, ρ, and ω for a = 79.98. The condition for existence given in Chapter
3.3.3, (ρ− δ1 +ω) > 0, is represented by the portion of the surface lying behind the
red plane. We restrict the z-axis range to [0,1]. For some parameter values (first two
columns), larger values of ρ cause the surface to be within this range, indicating that
PQ < R, so the corresponding equilibrium point is not stable. Values plotted along
the plane (ρ− δ1 + ω) = 0 are asymptotic and do not contribute to our analysis.640

34



Figure 3.13: For case 3: linear f , logistic g, the surface P is plotted as a function
of varying δ1, δ2, ρ, and ω for a = 79.98. For all values satisfying the condition for
existence given in Chapter 3.3.3, (ρ−δ1 +ω) > 0, given by the portion of the surface
lying behind the red plane, the surface P lies above the green plane representing
P = 0.

Figure 3.14: For case 3: linear f , logistic g, the surface Q is plotted as a function
of varying δ1, δ2, ρ, and ω for a = 79.98. For all values satisfying the condition for
existence given in Chapter 3.3.3, (ρ−δ1 +ω) > 0, given by the portion of the surface
lying behind the red plane, the surface Q lies above the green plane representing
Q = 0.

645

Figure 3.15: For case 3: linear f , logistic g, the surface R is plotted as a function
of varying δ1, δ2, ρ, and ω for a = 79.98. For all values satisfying the condition for
existence given in Chapter 3.3.3, (ρ−δ1 +ω) > 0, given by the portion of the surface
lying behind the red plane, the surface R lies above the green plane representing
R = 0.
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For the trivial steady state, on the other hand, we calculate the nondimensional
Jacobian from (3.36).

J(0, 0, 0) =

ω − 2ω(0)− δ1 + ρ 0 0
1 −δ2 0
0 a −1

 =

ω − δ1 + ρ 0 0
1 −δ2 0
0 a −1

 (3.41)

From (3.41), we see that all eigenvalues of J(0, 0, 0) are negative (corresponding
to a stable steady state at the origin) when (ρ − δ1 + ω) < 0, otherwise the origin650

is not stable. This makes sense, as the nontrivial positive equilibrium point only
exists for (ρ− δ1 + ω) > 0, and we saw above that it is always stable in that case.

3.4.4 Stability of Case 4: Hill-type F , Logistic G

In this case we have f(r3) = 1
1+rn3

and g(r1) = ωr1(1− r1). Substitution into (3.35),

where ~r∗ = (r∗1, r
∗
2, r
∗
3) represents the nontrivial equilibrium point, yields:655

P = (1 + δ2 + 2ωr∗1 − ω + δ1 − ρ
1

1 + r∗3
n

)

Q = (δ2 + (δ2 + 1)(2ωr∗1 − ω + δ1 − ρ
1

1 + r∗3
n

))

R = (aρ
nr∗3

n−1

(r∗3
n + 1)2 r

∗
1 + δ2(2ωr∗1 − ω + δ1 − ρ

1

1 + r∗3
n

)) (3.42)

We generate plots of the expressions for P , Q, and R given in (3.42) in MATLAB
for varying values of the parameters δ1, δ2, ρ, and a with ω = 19.92 to determine
the signs of these values. From figures 3.17, 3.18, and 3.19, we see that P , Q,
and R are all strictly positive for relevant parameter choices. This means that
the characteristic polynomial for this case has no positive real roots. However,660

to determine the stability of the equilibrium point computed in Chapter 3.3.4, we
also must examine the inequality PQ > R. In Figure 3.16 we plot PQ/R. If the
surface PQ/R lies in the range [0,1], we have PQ < R and hence the Routh-Hurwitz
Criterion are not satisfied. We notice that for small values of δ2 and large values of
ρ, the surface falls into this range. Therefore, choice of parameters with the ranges665

given by Table 3.1 can drive the equilibrium away from being stable.
From figures 3.17, 3.18, and 3.19, we note that, like in the preceding three cases,

increasing δ2 increases the distance from the 0 plane, while changing δ1 impacts the
asymptotic behavior for small values of ρ. However, unlike the previous cases, in
regions where the condition δ1 ≥ (ρ + ω) given by Theorem 3.3.4 is satisfied, there670

is no steady state value and consequently no P , Q, or R surface to be plotted for
the corresponding parameter values.
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Figure 3.16: For case 4: hill-type f , logistic g, the surface PQ/R is plotted as a
function of varying δ1, δ2, ρ, and a for ω = 19.92. We restrict the z-axis range
to [0,1]. For some parameter values (first two columns), larger values of ρ cause
the surface to be within this range, indicating that PQ < R, so the corresponding
equilibrium point is not stable.

675

Figure 3.17: For case 4: hill-type f , logistic g, the surface P is plotted as a function
of varying δ1, δ2, ρ, and a for ω = 19.92. For all values, the surface P lies above the
green plane representing P = 0.
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Figure 3.18: For case 4: hill-type f , logistic g, the surface Q is plotted as a function
of varying δ1, δ2, ρ, and a for ω = 19.92. For all values, the surface Q lies above the
green plane representing Q = 0.

Figure 3.19: For case 4: hill-type f , logistic g, the surface R is plotted as a function
of varying δ1, δ2, ρ, and a for ω = 19.92. For all values, the surface R lies above the
green plane representing R = 0.680

For the trivial steady state, on the other hand, we calculate the nondimensional
Jacobian from (3.33) in (3.43).

J(0, 0, 0) =

ω − 2ω(0)− δ1 + ρ 1
1+0n

0 0

1 −δ2 0
0 a −1

 =

ω − δ1 + ρ 0 0
1 −δ2 0
0 a −1


(3.43)
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From (3.41), we see that all eigenvalues of J(0, 0, 0) are negative (corresponding
to a stable steady state at the origin) when (ρ− δ1 +ω) < 0, otherwise the origin is
unstable.685

3.5 Bifurcation Analysis when H = 0

Theorem 10. If the characteristic polynomial, written λ3 + Pλ2 +Qλ+R = 0, of
a system of ordinary differential equations has the property that R = PQ for some
value ~Rh in the system, then the system exhibits a Hopf Bifurcation at ~Rh.

Proof. See Ngonghala et al. [12].690

Theorem 11. The initial amplitude of solutions of (2.1) at the Hopf Bifurcation

point ~Rh, should it exist, is given by exp( PQευτ
2(Q+P 2)

).

Proof. We use the methodology of Ngwa [13]. Let ξ = R
PQ

> 0, where P , Q, and R

are defined in Proposition 4. By theorem 12, at ξ = ξc = 1 (2.1) undergoes a Hopf
Bifurcation. Write λ = λ(ξ), such that the roots of the characteristic polynomial695

are defined as a continuous function of ξ. Thus the characteristic polynomial given
in Proposition 4 may be written as:

λ3(ξ) + Pλ2(ξ) +Qλ(ξ) + ξPQ = 0 (3.44)

At ξc, (3.44) has a purely imaginary solution pair of λ(ξc) = ±i
√
Q and a nega-

tive real solution of λ(ξc) = −P . Implicitly differentiating (3.44) at ξ = ξc and
substituting the imaginary solution pair yields:700

λ′(ξc) =
−PQ

3λ2(ξc) + 2Pλ(ξc) +Q
=
P (Q± P

√
Qi)

2(Q+ P 2)
(3.45)

For 0 < ε << 1 and υ = ±1, a small perturbation away from the Hopf bifurcation
ξc can be represented as ξc + ευ. By Taylor Expansion and substitution of (3.45):

λ(ξc + ευ) ≈ λ(ξc) + λ′(ξc)ευ =
PQ

2(Q+ P 2)
ευ ± i

√
Q(1 +

P 2

2(Q+ P 2)
ευ) (3.46)

Thus, oscillatory solutions at ξc have initial amplitude given by:

exp(
PQευτ

2(Q+ P 2)
) (3.47)

Depending on the value of υ, the amplitude will either grow (υ = 1), or decay to
zero (υ = −1).705

For cases 1 (3.3.1) and 3 (3.3.3), where we obtained a closed form expression
for ~r∗, we seek to find relationships among the parameters to describe the Hopf
bifurcation given when PQ = R or PQ−R = 0 as described by Theorem 10 for the
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steady states determined in Chapter 3.3. We explain equations for the bifurcation
lotus as functions of the nondimensional parameters.710

For case 1, we recall that r∗1 =
ρ− δ1 +

√
(ρ− δ1)2 + 4ρ a

δ2

2ρ a
δ2

and r∗3 = a
δ2
r∗1, with

P , Q, and R given by (3.37). To simplify notation, let A = (1 + δ2) and B = ρ− δ1.
Then we have the following:

P = A−B+ρ
a

δ2

r∗1; Q = δ2+A

(
−B + ρ

a

δ2

r∗1

)
; R = aρr∗1+δ2+δ2

(
−B + ρ

a

δ2

r∗1

)

r∗1 =
ρ− δ1 +

√
(ρ− δ1)2 + 4ρ a

δ2

2ρ a
δ2

⇒ ρ
a

δ2

r∗1 =
B +

√
B2 + 4ρ a

δ2

2

Thus we have:

P = A−B +
B +

√
B2 + 4ρ a

δ2

2
= A− B

2
+

√
B2 + 4ρ a

δ2

2

Q = δ2 + A

−B +
B +

√
B2 + 4ρ a

δ2

2

 = δ2 + A

−B
2

+

√
B2 + 4ρ a

δ2

2

 ;

R = aρr∗1 + δ2 + δ2

−B +
B +

√
B2 + 4ρ a

δ2

2


= δ2

B +
√
B2 + 4ρ a

δ2

2

+ δ2 + δ2

−B
2

+

√
B2 + 4ρ a

δ2

2


= δ2

(√
B2 + 4ρ

a

δ2

)
+ δ2 = δ2

(
1 +

√
B2 + 4ρ

a

δ2

)

PQ =

A− B

2
+

√
B2 + 4ρ a

δ2

2

δ2 + A

−B
2

+

√
B2 + 4ρ a

δ2

2


=

(
A− B

2

)(
δ2 − A

B

2

)
+

√
B2 + 4ρ a

δ2

2
A

(
A− B

2
+ δ2 − A

B

2

)
+
A

4

(
B2 + 4ρ

a

δ2

)

= Aδ2 +
A

2
B2 −

(
A2 + δ2

) B
2

+ Aρ
a

δ2

+

√
B2 + 4ρ a

δ2

2
A

(
A− B

2
+ δ2 − A

B

2

)
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Then setting PQ = R implies that:715

Aδ2 +
A

2
B2 −

(
A2 + δ2

) B
2

+ Aρ
a

δ2

+

√
B2 + 4ρ a

δ2

2
A

(
A− B

2
+ δ2 − A

B

2

)
= δ2

(
1 +

√
B2 + 4ρ

a

δ2

)
=⇒ Aδ2 +

A

2
B2 −

(
A2 + δ2

) B
2

+ Aρ
a

δ2

− δ2

= δ2

√
B2 + 4ρ

a

δ2

−

√
B2 + 4ρ a

δ2

2
A

(
A− B

2
+ δ2 − A

B

2

)

Letting Γ = δ2−
1

2
A (1 + 2δ2), we can rewrite and further simplify the left-hand-

side (LHS) and right-hand-side (RHS) of the expression above.

LHS = Aδ2 +
A

2
B2 −

(
A2 + δ2

) B
2

+ Aρ
a

δ2

− δ2

= δ2
2 +

A

2
B2 −

(
A2 + δ2

) B
2

+ Aρ
a

δ2

RHS =

√
B2 + 4ρ

a

δ2

(
δ2 −

1

2
A

(
A− B

2
+ δ2 − A

B

2

))
=

√
B2 + 4ρ

a

δ2

(
δ2 −

1

2
A (1 + 2δ2) +

AB

4
(2 + δ2)

)
=

(
Γ +

AB

4
(2 + δ2)

)√
B2 + 4ρ

a

δ2

Therefore:

LHS = RHS =⇒ δ2
2 +

A

2
B2 −

(
A2 + δ2

) B
2

+ Aρ
a

δ2

=

(
Γ +

AB

4
(2 + δ2)

)√
B2 + 4ρ

a

δ2

Squaring both sides, we see:

(
δ2

2 +
A

2
B2 −

(
A2 + δ2

) B
2

+ Aρ
a

δ2

)2

=

(
Γ +

AB

4
(2 + δ2)

)2(
B2 + 4ρ

a

δ2

)
=⇒(

δ2
2 +

A

2
B2 −

(
A2 + δ2

) B
2

)2

+ A2ρ2

(
a

δ2

)2

+ 2

(
δ2

2 +
A

2
B2 −

(
A2 + δ2

) B
2

)(
Aρ

a

δ2

)
=

(
Γ +

AB

4
(2 + δ2)

)2

B2 +

(
Γ +

AB

4
(2 + δ2)

)2

4ρ
a
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Finally, we can write this expression as a polynomial in a and use the quadratic720

formula to write an expression for a in terms of the other parameters to characterize
the bifurcation lotus. By this methodology, the above transforms to:

a2 +Ma+N = 0

M =
δ2

Aρ

(
2

(
δ2

2 +
A

2
B2 −

(
A2 + δ2

) B
2

)
−
(

Γ +
AB

4
(2 + δ2)

)2
)

N =
δ2

2

A2ρ2

[(
δ2

2 +
A

2
B2 −

(
A2 + δ2

) B
2

)2

−
(

Γ +
AB

4
(2 + δ2)

)2

B2

]

For case 3, we recall that r∗1 = ρ−δ1+ω
ω+ρ a

δ2

and r∗3 = a
δ2
r∗1, with the most simplified

forms P , Q, and R given by (3.40). We restate (3.40):

P = 1 + δ2 + ωr∗1
Q = δ2 + (δ2 + 1)ωr∗1
R = aρr∗1 + δ2ωr

∗
1

Next, notice that R = r∗1(aρ+ δ2ω) = δ2r
∗
1(ω+ρ a

δ2
) = δ2(ρ− δ1 +ω). Meanwhile,725

PQ = δ2 + (δ2 + 1)ωr∗1 + δ2
2 + δ2(δ2 + 1)ωr∗1 + δ2ωr

∗
1 + (δ2 + 1)ω2(r∗1)2. To find

a convenient expression for PQ − R = 0, we simplify the expression, yielding the
expression in (3.48).

(PQ−R) = δ2(1 + δ2) + [(1 + δ2)2ω − aρ]r∗1 + (δ2 + 1)ω2(r∗1)2 = 0 (3.48)

From (3.48) we could form polynomials in each of the parameters ρ, a, and ω
by multiplying the expression by (ω + ρ a

δ2
)2. Then, using the quartic, cubic, and730

quadratic formulas would form an expression for ρ, a, and ω in terms of the other
parameters to represent the bifurcation lotus. As we required (ρ − δ1 + ω) > 0 for
this steady state to exist, we can conclude the following from (3.48).

Remark 5. For PQ−R = 0 in this case, it is necessary that ω(1 + δ2)2 < aρ.

In figure 3.20, we display an implicit plot of the three dimensional bifurcation735

plot in a, ρ, ω space. For the scope of this thesis, we do not consider bifurcations in
δ1 or δ2.
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Figure 3.20: We implicitly plot the solutions to (PQ−R) = δ2(1+δ2)+[(1+δ2)2ω−
aρ]r∗1 + (δ2 + 1)ω2(r∗1)2 = 0 to give a bifurcation plot in a, ρ, ω space for case 3:
linear f , logistic g with δ1 = 15 and δ2 = 20.
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Chapter 4740

Numerical Analyses for H = 0

We run numerical simulations of the system (2.1) in MATLAB using a modified
code for plotting the Lorenz equations [6] and the numerical bifurcation package
MATCONT for MATLAB, with Hil Meijer’s tutorials [11]. In all cases we use the
initial conditions (2.2) of R0

1 = 1.6653, R0
2 = 1.249, and R0

3 = 22.5 to represent745

a small perturbation away from the theoretical equilibrium state of R3 = 24.98 to
allow us to better observe any transient dynamics of the system (2.1).

4.1 Analysis for Case 1: Linear F , Constant G

Here we have F (R3) = 1− R3

s
and G(R1) = L. In figure 4.1, we display bifurcation

plots for the system, using parameter handles of γ and L, for parameter values in750

and around those given in table 2.5. We see the bifurcation lotus in the γ, L plane
divides the space into two regions, the first of which (labeled I) corresponds to stable
fixed points and the second of which (II) corresponds to stable limit cycles. This
relationship is illustrated in figure 4.2. Finally, plots in R1 × R2 × R3 space are
given of the solution dynamics to the system for parameters in both regions I and755

II in figure 4.3. In region I, the solution converges to a stable steady state, while in
region II the solution is a limit cycle about the equilibrium.

Figure 4.1: Bifurcation plots for F (R3) = 1− R3

s
and G(R1) = L. The middle figure

demonstrates behavior in R3 when traversing from region II to region I in the left
figure with γ held constant, while the right figure demonstrates behavior in R3 when
traversing from region I to region II in the left figure with L held constant.
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760

Figure 4.2: Plots of Ri vs. time for F (R3) = 1− R3

s
and G(R1) = L for each of the

regions in the bifurcation plane given in Figure 4.1.

Figure 4.3: Solution curves for F (R3) = 1− R3

s
and G(R1) = L in 3D space.

4.2 Analysis for Case 2: Hill-type F , Constant G

Here we have F (R3) = θn

θn+R3
n and G(R1) = L. In figure 4.4, we display bifurcation765

plots for the system, using parameter handles of γ and L, for parameter values in
and around those given in table 2.5. We see the bifurcation lotus in the γ, L plane
divides the space into two regions, the first of which (labeled I) corresponds to stable
fixed points and the second of which (II) corresponds to stable limit cycles. This
relationship is illustrated in figure 4.5. Finally, plots in R1 × R2 × R3 space are770

given of the solution dynamics to the system for parameters in both regions I and
II in figure 4.6. In region I, the solution converges to a stable steady state, while in
region II the solution is a limit cycle about the equilibrium.

45



Figure 4.4: Bifurcation plots for F (R3) = θn

θn+R3
n and G(R1) = L. The right figure

demonstrates behavior in R3 when traversing from region II to region I in the left
figure with γ held constant, while the right figure demonstrates behavior in R3 when
traversing from region I to region II in the left figure with L held constant.775

Figure 4.5: Plots of Ri vs. time for F (R3) = θn

θn+R3
n and G(R1) = L for each of the

regions in the bifurcation plane.

Figure 4.6: Solution curves forF (R3) = θn

θn+R3
n and G(R1) = L in 3D space.

4.3 Analysis for Case 3: Linear F , Logistic G780

Here we have F (R3) = 1− R3

s
and G(R1) = αR1(1− R1

K
). In figure 4.7, we display

bifurcation plots for the system, using parameter handles of γ and α, for parameter
values in and around those given in table 2.5. We see the bifurcation lotus in the γ,
α plane divides the space into two regions, the first of which (labeled I) corresponds
to stable fixed points and the second of which (II) corresponds to stable limit cycles.785

This relationship is illustrated in figure 4.8. Finally, plots in R1×R2×R3 space are
given of the solution dynamics to the system for parameters in both regions I and
II in figure 4.9. In region I, the solution converges to a stable steady state, while in
region II the solution is a limit cycle about the equilibrium.
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790

Figure 4.7: Bifurcation plots for F (R3) = 1 − R3

s
and G(R1) = αR1(1 − R1

K
). The

right figure demonstrates behavior in R3 when traversing from region II to region I in
the left figure with γ held constant, while the right figure demonstrates behavior in
R3 when traversing from region I to region II in the left figure with α held constant.

Figure 4.8: Plots of Ri vs. time for F (R3) = 1− R3

s
and G(R1) = αR1(1− R1

K
) for

each of the regions in the bifurcation plane.

Figure 4.9: Solution curves for F (R3) = 1 − R3

s
and G(R1) = αR1(1 − R1

K
) in 3D

space.795

4.4 Analysis for Case 4: Hill-type F , Logistic G

Here we have F (R3) = θn

θn+R3
n and G(R1) = αR1(1− R1

K
). In figure 4.10, we display

bifurcation plots for the system, using parameter handles of γ and α, for parameter
values in and around those given in table 2.5. We see the bifurcation lotus in the γ,
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α plane divides the space into two regions, the first of which (labeled I) corresponds800

to stable fixed points and the second of which (II) corresponds to stable limit cycles.
This relationship is illustrated in figure 4.11. Finally, plots in R1 × R2 × R3 space
are given of the solution dynamics to the system for parameters in both regions I
and II in figure 4.12. In region I, the solution converges to a stable steady state,
while in region II the solution is a limit cycle about the equilibrium.805

Figure 4.10: Bifurcation plots for F (R3) = θn

θn+R3
n and G(R1) = αR1(1− R1

K
). The

right figure demonstrates behavior in R3 when traversing from region I through
region II back to region I in the left figure with γ held constant, while the right
figure demonstrates behavior in R3 when traversing from region I to region II in the
left figure with α held constant.

Figure 4.11: Plots of Ri vs. time for F (R3) = θn

θn+R3
n and G(R1) = αR1(1− R1

K
) for

each of the regions in the bifurcation plane.

810
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Figure 4.12: Solution curves for F (R3) = θn

θn+R3
n and G(R1) = αR1(1 − R1

K
) in 3D

space.

49



Chapter 5

Applications to Blood Loss
Systems, H 6= 0

Below we present several choices of H and the biological context which they may be815

used to model.

5.1 Constant Loss Function

A constant choice of H could be utilized in cases of constant bleeding or other loss
due to disease. In figure 5.2, we display a numerical output for

H(R3) = A

where A = 0.25 and all other parameters retain the values in table 2.5. In the820

figure, we observe Ri vs. time when the system is started from a perturbation at
t = 0. We notice that the system settles to a steady state value smaller in magnitude
than the case when H = 0.

Figure 5.1: Plots of Ri vs. time for H as a constant function using human parame-
ters.825
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5.2 Sinusoidal Loss Function

A sinusoidal choice of H could be used to model menstruation. In figure ??, we
display a numerical output for

H(R3) = A| sin(πt/30)|

where we use A = 0.25 and all other parameters retain the values in table 2.5.
This periodic choice of H reaches its peak value of A every 30 days, modeling a830

monthly cycle. In the figure, we observe that R3 settles down to fixed oscillations
with period 30 days, matching the behavior of this choice of H.

Figure 5.2: Plots of Ri vs. time for H as a sinusoidal function using human param-
eters. R3 dynamics follow a period of 30 days, which is the same as the period of
this choice of H.

5.3 Piecewise Loss Function835

A piecewise choice of H could be used to model periodic loss, such as bloodletting
or menstruation. In figure 5.3, we display a numerical output for

H(R3) =

{
0 if (t mod 30) < 24

A else

where we use A = 0.25 and all other parameters retain the values in table 2.5.
This piecewise function gives a square wave following a monthly cycle. In the figure,
we notice that R3 exhibits jagged oscillations with period 30 days, following the840

periodic impulse behavior of this choice of H.

51



Figure 5.3: Plots of Ri vs. time for H as a piecewise function using human param-
eters. R3 dynamics follow a period of 30 days, which is the same as the period of
this choice of H.

While we have illustrated the dynamics for three examples of H 6= 0, we can
extend this framework to a host of other possibilities. For example, adding a fourth845

variable for malaria could extend the applicability of the H function, allowing for
modeling of malarial parasitemia.
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Chapter 6

Discussion

In Chapter 4, we observed bifurcations for each of the four cases of functional choices850

examined within this thesis. However, in the first case, we notice that the param-
eter windows necessary for these bifurcations fall outside those given in Table 2.5.
The other cases, however, exhibit bifurcations within these biologically reasonable
windows, showing that this model of blood dynamics can exhibit oscillatory dynam-
ics for perturbed parameter values. We saw that all four cases exhibited a linearly855

stable region (within the desired parameter region) with a unique, nontrivial steady
state. For the case where G is modeled by a logistic function, this steady state only
existed when certain threshold conditions that coincided with the instability of the
trivial steady state were met. In Chapter 5, we saw how the system 2.1 can exhibit
oscillatory dynamics for an appropriate choice of ongoing loss in the functional H.860

Results for mice hold by rescaling of the values obtained for humans. How-
ever, the production of precursor cells in the spleen by mice provides an interesting
dynamic to the feedback function, as splenic regeneration helps boost feedback fol-
lowing a blood loss. It remains to be seen whether the feedback functions discussed
in this thesis can account for this boosted regeneration, or if a second feedback865

function representing this phenomena would be the more appropriate choice.
In this thesis, we set out to create a generalized model of erythropoiesis dur-

ing blood loss. Above, we discussed several potential applications of this model
to Polycythemia Vera, menstruation, and bloodletting. We examined the impact
of parameters on system dynamics and explored the impact of choosing different870

functions to capture the processes of feedback and production. We mathematically
observed the similarity in dynamics among four different functional choices, seeing
that a variety of functions can be used to caption the dynamics of erythropoiesis.
We also saw how the loss function H can be extended to specific loss scenarios. In
the future, linking this function to malarial parasitemia by making H a function of875

both R3 and parasitemia could prove useful in modeling the impact of this disease
on the blood.
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Chapter 7

Appendix

7.1 Mathematics in Original Variables880

Proposition 4. We state the characteristic polynomial pJ(λ) of (2.1) in (7.1):

pJ(λ) = −β2k1k2γF
′(R3)R1 − (βk2 + λ)(βa+H ′(R3) + λ)(βG′(R1)− βk1 + γF (R3)− λ)

= λ3 − λ2[βG′(R1)− βk1 + γF (R3)− βk2 − βa−H ′(R3)]

− λ[(βG′(R1)− βk1 + γF (R3))(βk2 + βa+H ′(R3))− βk2(βa+H ′(R3))]

− [β2k1k2γF
′(R3)R1 + βk2(βa+H ′(R3))(βG′(R1)− βk1 + γF (R3))]

(7.1)

The characteristic polynomial in (7.1) can be written in the form λ3 + Pλ2 +
Qλ+R = 0, where:

P = −βG′(R1) + βk1 + βµ1 − γF (R3) + βk2 + βµ2 + βµ3 +H ′(R3)

Q = (−βG′(R1) + βk1 + βµ1 − γF (R3))(βk2 + βµ2 + βµ3 +H ′(R3)) + (βk2 + βµ2)(βµ3 +H ′(R3))

R = −β2k1k2γF
′(R3)R1 − (βk2 + βµ2)(βµ3 +H ′(R3))(βG′(R1)− βk1 − βµ1 + γF (R3))

Notice that if (βG′(R1) − βk1 − βµ1 + γF (R3)) ≤ 0; P > 0, Q > 0, and R > 0
are guaranteed. By Proposition 2 and Proposition 1, this condition will be met for
some values of ~R = (R1, R2, R3) independent of parameters.

Theorem 12. If the characteristic polynomial, written λ3 + Pλ2 +Qλ+R = 0, of885

a system of ordinary differential equations has the property that R = PQ for some
value ~Rh in the system, then the system exhibits a Hopf Bifurcation at ~Rh.

Proof. See Ngonghala et al. [12].

We will demonstrate that ~Rh exists for (2.1) and define the following groupings:

X = (−βG′(R1) + βk1 − γF (R3)) Y = (βk2 + βµ+H ′(R3))

Z = −β2k1k2γF
′(R3)R1 W = βk2(βµ+H ′(R3)) = βk2(Y − βk2) (7.2)
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From (7.2) and Proposition 4, we have:

P = X + Y Q = XY +W R = Z +WX PQ = X2Y + Y 2X +WX +WY
(7.3)

Theorem 13. The system (2.1) can exhibit a Hopf Bifurcation for biologically rea-
sonable parameter and function choices.890

Proof. By (7.3) and Theorem 12, ~Rh will exist when Z = X2Y + Y 2X + WY =
Y (X2 + XY + W ). Using the nondimensionalization given in Section 3.2, this
condition can be simplified to the following, with x and y defined:

−µk1k2f
′(r3)r1 = (k2 + k1x)(k2 + y)(k1x+ y) (7.4)

x = (−f(r3)− g′(r1) + 1) y = (µ+ h′(r3))

Therefore the following equality will hold at the Hopf Bifurcation point, ~Rh:

PQ

R
=

(k2 + k1x)(k2 + y)(k1x+ y)

−µk1k2f ′(r3)r1

(7.5)

If (2.1) has a biologically reasonable interpretation for both PQ
R
>> 1 and PQ

R
<< 1,895

then by the intermediate value theorem, PQ
R

= 1, and thus the Hopf Bifurcation

point ~Rh, can exist.
When R1 →∞, if x > 0, then PQ

R
>> 1. If x < 0 and k2+k1x < 0, meanwhile, as

h is bounded and increasing (Proposition 3) we may find an r3 such that µ+h′(r3) ≤
k2 since µ < k2 by design. This means the numerator will still be positive, and900

PQ
R

>> 1. This state corresponds to low R1 levels - corresponding to large blood
loss or death.

In the alternate case of PQ
R

<< 1, we take R1 > R∗1, where R∗1 is the steady
state value. Then assume G′(R1) ≤ 0, G′(R1) → 0 as R1 → ∞, and f(r3) ≥ 1.
These conditions result in PQ

R
<< 1 for large R1, so we see this state corresponds to905

high R1 values and an overabundance of precursor cells, in contrast to the previous
situations.

Thus we see that these two biological events - low precursor blood cell count or
high precursor blood cell count - swing (2.1) away from the situation of PQ

R
= 1 and

the Hopf lotus.910

7.2 MATLAB Code

MATLAB code used to generate the graphics and numerical results in the preceding
chapters is given, excluding MATCONT results, to which credit goes to [11].
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7.2.1 Code for Chapter 3.3

To generate the existence plots given in Chapters 3.3.2 and 3.3.4 above, we use the in-915

puts (1, 1/8, 1/6, 1/120, 0.3, 24.98, 12.5, 5, .21, .166, 6.66, 0, 0) on
the functions presented in the MATLAB code below.

1 function IntersectPlotter2(beta, k1, k2, mu3, gamma, s, theta, ...
n, L, alpha, K, mu1, mu2)920

2 l=1;
3 a3=[350 604.8 700];
4 rho=[12 36 100];
5 for j=1:3
6 for k=1:3925

7

8 ∆1 = (k1+mu1)/mu3;
9 ∆2 = (k2+mu2)/mu3;

10

11 R3=18:13/99:31;930

12 r3=R3/theta;
13 r1=r3*∆2/a3(j);
14 n=1:5;
15

16 lo=(rho(k)−∆1).*r1+1;935

17

18 subplot(3,3,l)
19

20 plot(r1,lo)
21940

22 hold on
23 for i=1:5
24

25 ho=−∆1*(a3(j)/∆2)ˆn(i).* ...
r1.ˆ(n(i)+1)+(a3(j)/∆2)ˆn(i).*r1.ˆn(i);945

26

27 plot(r1,−ho)
28

29 end
30 xlabel('r 1'); %ylabel();950

31 title(sprintf("%s = %s, %s = ...
%s",'a',num2str(a3(j)),'\rho',num2str(rho(k))));

32 hold off
33 ylim([min(lo)−2 max(lo)+2])
34 lgd=legend('V(r 1)','U(r 1), n=1','U(r 1), n=2','U(r 1), ...955

n=3','U(r 1), n=4','U(r 1), n=5','Location','best');
35 lgd.NumColumns = 3;
36 l=l+1;
37 end
38 end960

39 sgtitle("Intersection(s) of U(r 1)=\∆ 1(a/\∆ 2)ˆn ...
r 1ˆ{n+1}−(a/\∆ 2)ˆn r 1ˆn and V(r 1)=1+(\rho−\∆ 1)r 1 for ...
varying n")

40 end
41965
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42 %%%%%%%%
43

44 function IntersectPlotter4a(beta, k1, k2, mu3, gamma, s, theta, ...
n, L, alpha, K, mu1, mu2)

45 l=1;970

46 a4=[90 159.84 180];
47 rho=[12 36 80];
48 %w=[6 19.92 40]
49 for j=1:3
50 for k=1:3975

51

52 ∆1 = (k1+mu1)/mu3;
53 ∆2 = (k2+mu2)/mu3;
54

55 w=alpha/mu3;980

56

57 R3=18:13/99:31;
58 r3=R3/theta;
59 r1=r3*∆2/a4(j);
60 n=1:5;985

61

62 lo=(rho(k)+w−∆1)−w.*r1;
63

64 subplot(3,3,l)
65990

66 plot(r1,lo)
67

68 hold on
69 for i=1:5
70995

71 ho=−w*(a4(j)/∆2)ˆn(i).*r1.ˆ(n(i)+1) ...
+(w−∆1)*(a4(j)/∆2)ˆn(i).*r1.ˆn(i);

72

73 plot(r1,−ho)
741000

75 end
76 xlabel('r 1'); %ylabel();
77 title(sprintf("%s = %s, %s = %s, %s = ...

%s",'a',num2str(a4(j)),'\rho',num2str(rho(k)),'\omega', ...
num2str(w)));1005

78 hold off
79 ylim([min(lo)−2 max(lo)+2])
80 lgd=legend('V(r 1)','U(r 1), n=1','U(r 1), n=2','U(r 1), ...

n=3','U(r 1), n=4','U(r 1), n=5','Location','best');
81 lgd.NumColumns = 3;1010

82 l=l+1;
83 end
84 end
85 sgtitle("Intersection(s) of U(r 1)=\omega (a/\∆ 2)ˆn ...

r 1ˆ{n+1}−(\omega − \∆ 1)(a/\∆ 2)ˆn r 1ˆn and V(r 1)=(\rho+ ...1015

\omega − \∆ 1)− \omega r 1 for varying n")
86 end
87

88 function IntersectPlotter4b(beta, k1, k2, mu3, gamma, s, theta, ...
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n, L, alpha, K, mu1, mu2)1020

89 l=1;
90 %a4=[90 159.84 180];
91 rho=[12 36 80];
92 w=[6 19.92 21];
93 for j=1:31025

94 for k=1:3
95

96 ∆1 = (k1+mu1)/mu3;
97 ∆2 = (k2+mu2)/mu3;
981030

99 a4=(k1*k2*K)/(mu3.ˆ2*theta);
100

101 R3=18:13/99:31;
102 r3=R3/theta;
103 r1=r3*∆2/a4;1035

104 n=1:5;
105

106 lo=(rho(k)+w(j)−∆1)−w(j).*r1;
107

108 subplot(3,3,l)1040

109

110 plot(r1,lo)
111

112 hold on
113 for i=1:51045

114

115 ho=−w(j)*(a4/∆2)ˆn(i).*r1.ˆ(n(i)+1) ...
+(w(j)−∆1)*(a4/∆2)ˆn(i).*r1.ˆn(i);

116

117 plot(r1,−ho)1050

118

119 end
120 xlabel('r 1'); %ylabel();
121 title(sprintf("%s = %s, %s = %s, %s = ...

%s",'a',num2str(a4),'\rho',num2str(rho(k)),'\omega', ...1055

num2str(w(j))));
122 hold off
123 ylim([min(lo)−2 max(lo)+2])
124 lgd=legend('V(r 1)','U(r 1), n=1','U(r 1), n=2','U(r 1), ...

n=3','U(r 1), n=4','U(r 1), n=5','Location','best');1060

125 lgd.NumColumns = 3;
126 l=l+1;
127 end
128 end
129 sgtitle("Intersection(s) of U(r 1)=\omega (a/\∆ 2)ˆn ...1065

r 1ˆ{n+1}−(\omega − \∆ 1)(a/\∆ 2)ˆn r 1ˆn and V(r 1)=(\rho+ ...
\omega − \∆ 1)− \omega r 1 for varying n")

130 end
131

132 function IntersectPlotter(beta, k1, k2, mu3, gamma, s, theta, n, ...1070

L, alpha, K, mu1, mu2)
133 l=1;
134 a4=[90 159.84 180];
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135 %rho=[12 36 80];
136 w=[6 19.92 21];1075

137 for j=1:3
138 for k=1:3
139

140 ∆1 = (k1+mu1)/mu3;
141 ∆2 = (k2+mu2)/mu3;1080

142 rho=gamma/(beta*mu3);
143

144 R3=18:13/99:31;
145 r3=R3/theta;
146 r1=r3*∆2/a4(k);1085

147 n=1:5;
148

149 lo=(rho+w(j)−∆1)−w(j).*r1;
150

151 subplot(3,3,l)1090

152

153 plot(r1,lo)
154

155 hold on
156 for i=1:51095

157

158 ho=−w(j)*(a4(k)/∆2)ˆn(i).*r1.ˆ(n(i)+1) ...
+(w(j)−∆1)*(a4(k)/∆2)ˆn(i).*r1.ˆn(i);

159

160 plot(r1,−ho)1100

161

162 end
163 xlabel('r 1'); %ylabel();
164 title(sprintf("%s = %s, %s = %s, %s = ...

%s",'a',num2str(a4(k)),'\rho',num2str(rho),'\omega', ...1105

num2str(w(j))));
165 hold off
166 ylim([min(lo)−2 max(lo)+2])
167 lgd=legend('V(r 1)','U(r 1), n=1','U(r 1), n=2','U(r 1), ...

n=3','U(r 1), n=4','U(r 1), n=5','Location','best');1110

168 lgd.NumColumns = 3;
169 l=l+1;
170 end
171 end
172 sgtitle("Intersection(s) of U(r 1)=\omega (a/\∆ 2)ˆn ...1115

r 1ˆ{n+1}−(\omega − \∆ 1)(a/\∆ 2)ˆn r 1ˆn and V(r 1)=(\rho+ ...
\omega − \∆ 1)− \omega r 1 for varying n")

173 end

7.2.2 Code for Chapter 3.41120

To output the figures displayed in Chapter 3.4, we call the function CharPolySurfPlotter,
which uses the functions CharPolySurf and CharPolyCoeffs in its operation. Vary-
ing the parameters choice and coeff and with the other inputs given by Tests=CharPolySurfPlotter(choice

,1,coeff,1,20,[0 .1875 3/8],[0 225/1200 450/1200],[2,5,10],[.01 .05 .1]);,
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we obtained the plots.1125

1 function ...
Tests=CharPolySurfPlotter(choice,sub,coeff,tester,size,mu1,mu2,n,z)

2

3 %choice: which functional choices for f and g to use1130

4 %sub: parameter for plots
5 %coeff: which plot to print
6 %tester: boolean for returning checks on P, Q, and R
7 %size: number of points to plot
8 %mu1, mu2, n, z: test values for various parameters1135

9

10 if choice=="1"
11 lb(1)="a";
12 lb(2)="\rho";
13 elseif choice == "3"1140

14 lb(1)="\omega";
15 lb(2)="\rho";
16 elseif choice=="2"
17 lb(1)="a";
18 lb(2)="\rho";1145

19 elseif choice=="4"
20 lb(1)="a";
21 lb(2)="\rho";
22 end
23 k=1;1150

24 figure
25 for i=1:3
26 for j=1:3
27 if sub==1
28 [x,y,P,Q,R,∆1,∆2,n1,w]=CharPolySurf(1, 1/8, 1/6, ...1155

1/120, .3, 24.98, 12.5, 5, 0.21, .166, 6.66, ...
mu1(i), mu2(j), .25, choice, [1.6653 1.249 ...
22.5], 0, 3000,0,0, size);

29 xa="\∆ 1";
30 xv=∆1;1160

31 ya="\∆ 2";
32 yv=∆2;
33 elseif sub==2
34 [x,y,P,Q,R,∆1,∆2,n1,w]=CharPolySurf(1, 1/8, 1/6, ...

1/120, .3, 24.98, 8.9, n(j), 0.1, .22, 6.66, ...1165

mu1(i), 0, .25, choice, [1.6653 1.249 22.5], 0, ...
3000,0,0, size);

35 xa="\∆ 1";
36 xv=∆1;
37 ya="n";1170

38 yv=n1;
39 elseif sub==3
40 [x,y,P,Q,R,∆1,∆2,n1,w]=CharPolySurf(1, 1/8, 1/6, ...

1/120, .3, 24.98, 8.9, n(j), 0.1, .22, 6.66, 0, ...
mu2(i), .25, choice, [1.6653 1.249 22.5], 0, ...1175

3000,0,0, size);
41 xa="\∆ 2";
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42 xv=∆2;
43 ya="n";
44 yv=n1;1180

45 elseif sub==4
46 [x,y,P,Q,R,∆1,∆2,n1,w]=CharPolySurf(1, 1/8, 1/6, ...

1/120, .3, 24.98, 8.9, n(j), 0.1, z(i), 6.66, 0, ...
0, .25, choice, [1.6653 1.249 22.5], 0, ...
3000,0,0, size);1185

47 xa="\omega";
48 xv=w;
49 ya="n";
50 yv=n1;
51 end1190

52 subplot(3,3,k)
53 if coeff=='P'
54 surf(x,y,P)
55

56 if choice=="3"1195

57 xPlane = [x(1,1) ...
x(length(x(1,:)),length(x(1,:))) ...
x(length(x(1,:)),length(x(1,:))) x(1,1)];

58 yPlane1 = ∆1−xPlane;
59 zPlane = [−10000 −10000 10000 10000];1200

60 hold on;
61 patch(xPlane, yPlane1, zPlane, 'r', 'FaceAlpha', ...

0.5);
62 hold off
63 xlim([x(1,1) x(length(x(1,:)),length(x(1,:)))])1205

64 ylim([y(1,1) y(length(y(:,1)),length(y(:,1)))])
65 zlim([min(min(P, [], 'all'),−10) max(P, [], 'all')])
66 end
67 hold on;
68 patch([x(length(x(1,:)),length(x(1,:))) x(1,1) ...1210

x(1,1) x(length(x(1,:)),length(x(1,:)))], ...
[y(length(y(:,1)),length(y(:,1))) ...
y(length(y(:,1)),length(y(:,1))) y(1,1) y(1,1)], ...
[0 0 0 0], 'g', 'FaceAlpha', 0.5);

69 hold off1215

70

71 xlabel(lb(1)); ylabel(lb(2)); zlabel(coeff);
72 title(sprintf('%s = %s, %s = ...

%s',xa,num2str(xv),ya,num2str(yv)));
73 elseif coeff=='Q'1220

74 surf(x,y,Q)
75

76 if choice=="3"
77 xPlane = [x(1,1) ...

x(length(x(1,:)),length(x(1,:))) ...1225

x(length(x(1,:)),length(x(1,:))) x(1,1)];
78 yPlane1 = ∆1−xPlane;
79 zPlane = [−10000 −10000 10000 10000];
80 hold on;
81 patch(xPlane, yPlane1, zPlane, 'r', 'FaceAlpha', ...1230

0.5);
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82 hold off
83 xlim([x(1,1) x(length(x(1,:)),length(x(1,:)))])
84 ylim([y(1,1) y(length(y(:,1)),length(y(:,1)))])
85 zlim([min(Q, [], 'all') max(Q, [], 'all')])1235

86 end
87 hold on;
88 patch([x(length(x(1,:)),length(x(1,:))) x(1,1) ...

x(1,1) x(length(x(1,:)),length(x(1,:)))], ...
[y(length(y(:,1)),length(y(:,1))) ...1240

y(length(y(:,1)),length(y(:,1))) y(1,1) y(1,1)], ...
[0 0 0 0], 'g', 'FaceAlpha', 0.5);

89 hold off
90

91 xlabel(lb(1)); ylabel(lb(2)); zlabel(coeff);1245

92 title(sprintf('%s = %s, %s = ...
%s',xa,num2str(xv),ya,num2str(yv)));

93 elseif coeff=='R'
94 surf(x,y,R)
951250

96 if choice=="3"
97 xPlane = [x(1,1) ...

x(length(x(1,:)),length(x(1,:))) ...
x(length(x(1,:)),length(x(1,:))) x(1,1)];

98 yPlane1 = ∆1−xPlane;1255

99 zPlane = [−10000 −10000 10000 10000];
100 hold on;
101 patch(xPlane, yPlane1, zPlane, 'r', 'FaceAlpha', ...

0.5);
102 hold off1260

103 xlim([x(1,1) x(length(x(1,:)),length(x(1,:)))])
104 ylim([y(1,1) y(length(y(:,1)),length(y(:,1)))])
105 zlim([min(R, [], 'all') max(R, [], 'all')])
106 end
107 hold on;1265

108 patch([x(length(x(1,:)),length(x(1,:))) x(1,1) ...
x(1,1) x(length(x(1,:)),length(x(1,:)))], ...
[y(length(y(:,1)),length(y(:,1))) ...
y(length(y(:,1)),length(y(:,1))) y(1,1) y(1,1)], ...
[0 0 0 0], 'g', 'FaceAlpha', 0.5);1270

109 hold off
110

111 xlabel(lb(1)); ylabel(lb(2)); zlabel(coeff);
112 title(sprintf('%s = %s, %s = ...

%s',xa,num2str(xv),ya,num2str(yv)));1275

113

114 elseif coeff=="PQ/R"
115

116 surf(x,y,P.*Q./R);
1171280

118 if choice=="3"
119 xPlane = [x(1,1) ...

x(length(x(1,:)),length(x(1,:))) ...
x(length(x(1,:)),length(x(1,:))) x(1,1)];

120 yPlane1 = ∆1−xPlane;1285
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121 zPlane = [−10000 −10000 10000 10000];
122 hold on;
123 patch(xPlane, yPlane1, zPlane, 'r', 'FaceAlpha', ...

0.5);
124 hold off1290

125 xlim([x(1,1) x(length(x(1,:)),length(x(1,:)))])
126 ylim([y(1,1) y(length(y(:,1)),length(y(:,1)))])
127 zlim([min(R, [], 'all') max(R, [], 'all')])
128 end
1291295

130 zlim([0 1])
131

132 xlabel(lb(1)); ylabel(lb(2)); zlabel("PQ/R");
133 title(sprintf('%s = %s, %s = ...

%s',xa,num2str(xv),ya,num2str(yv)));1300

134

135 end
136

137 if tester==1
138 Tests(k,:)=CharPolyCoeffs(x,y,P,Q,R,∆1,choice,size);1305

139 else
140 Tests=0;
141 end
142 k=k+1;
143 end1310

144 end
145 sgtitle("Plots of "+coeff+" for varying "+lb(1)+", "+lb(2)+", ...

"+xa+", and "+ya+" for case "+choice)
146 end

1315

1 function [x,y,P,Q,R,∆1,∆2,n,w]=CharPolySurf(beta, k1, k2, mu3, ...
gamma, s, theta, n, L, alpha, K, mu1, mu2, A, choice, initV, ...
ts, tf, T, eps, size)

21320

3 %input (beta, k1, k2, mu3, gamma, s, theta, n, L, alpha, K, mu1, ...
mu2, A, choice, initV, ts, tf, T, eps, size)

4

5 % beta − Individual blood regeneration amplifying factor ...
independent of fractional blood loss1325

6 % k1 − Transition rate between R1 and R2 (1/8 in humans)
7 % k2 − Transition rate between R2 and R3 (1/6 in humans)
8 % mu3 − Death rate of R3 (1/120 in humans)
9 % gamma − Individual blood regeneration amplifying factor ...

dependent on fractional blood loss1330

10 % s − Mean steady state value of R3
11 % theta − Saturation constant for R3 feedback
12 % n − Sensitivity of feedback with respect to changes in ...

population size
13 % L − Constant growth rate of R11335

14 % alpha − Logistic growth rate
15 % K − Maximum stimulated size of R1 population
16 % mu1 − Natural apoptosis rate of R1
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17 % mu2 − Natural apoptosis rate of R2
18 % A − Constant loss from R31340

19 % choice − 1, 2, 3, or 4 for different F and G functions
20 % initV − Initial value starting conditions
21 % ts − Time at which to begin simulation
22 % tf − Time at which to end simulation
23 % T − Unused time variable1345

24 % eps − Unused tolerance
25 % size − Number of points to plot
26

27 %%nondimensional parameters
281350

29 ∆1 = (k1+mu1)/mu3;
30 ∆2 = (k2+mu2)/mu3;
31 rho=gamma/(beta*mu3);
32 a1=(k1*k2*L)/(mu3.ˆ3*s);
33 a2=(k1*k2*K)/(mu3.ˆ2*s);1355

34 a3=(k1*k2*L)/(mu3.ˆ3*theta);
35 a4=(k1*k2*K)/(mu3.ˆ2*theta);
36 w=alpha/mu3;
37 r11=(rho − ∆1 + sqrt((rho−∆1).ˆ2+4*rho*a1/∆2))/(2*rho*a1/∆2);
38 r31=r11*a1/∆2;1360

39

40 %initializing arrays
41 P=zeros(size);
42 Q=zeros(size);
43 R=zeros(size);1365

44

45 %linear f constant g
46 if choice=="1"
47 a1 m=160:390/(size−1):550;
48 rho m=1:239/(size−1):240;1370

49 for j=1:size
50 for i=1:size
51

52 r11m=(rho m(i) − ∆1 + ...
sqrt((rho m(i)−∆1)ˆ2+4*rho m(i)*a1 m(j)/∆2))/(2*rho m(i)*a1 m(j)/∆2);1375

53 r31m=r11m*a1 m(j)/∆2;
54

55 combination=∆1 − rho m(i) + rho m(i)*r31m;
56

57 P(i,j) = 1+∆2 + combination;1380

58 Q(i,j) = ∆2 + (∆2 + 1)*(combination);
59 R(i,j) = a1 m(j)*rho m(i)*r11m + ∆2*(combination);
60

61 end
62 end1385

63 [x,y] = meshgrid(a1 m,rho m);
64

65 %hill−type f, constant g
66 elseif choice=="2"
671390

68 a3 m=330:720/(size−1):1050;
69 rho m=1:239/(size−1):240;
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70 r13m=0;
71 for j=1:size
72 for i=1:size1395

73 %computing equilibrium point numerically
74 poly=zeros(1,n+2);
75 poly(1)=−∆1*(a3 m(j)/∆2)ˆn;
76 poly(2)=(a3 m(j)/∆2)ˆn;
77 poly(n+1)=rho m(i)−∆1;1400

78 poly(n+2)=1;
79 rooty=roots(poly);
80 posrootcount=0;
81

82 for rt=1:n+11405

83 if real(rooty(rt))>0 && imag(rooty(rt))==0
84 r13m=real(rooty(rt));
85 posrootcount=posrootcount+1;
86 end
87 if posrootcount>11410

88 fprintf('Additional root of %13.2e found at ...
a= %13.2e and rho = ...
%13.2e\n',r13m,a3 m(j),rho m(i));

89 end
90 end1415

91 if posrootcount==0
92 fprintf('No roots found at a= %13.2e and rho = ...

%13.2e with ∆1 = %13.2e and ∆2 = ...
%13.2e\n',a3 m(j),rho m(i),∆1,∆2);

93 end1420

94

95 r33m=r13m*a3 m(j)/∆2;
96

97 combination=∆1 − rho m(i)/(1+r33mˆn);
981425

99 P(i,j) = 1+∆2 + combination;
100 Q(i,j) = ∆2 + (∆2 + 1)*(combination);
101 R(i,j) = a3 m(j)*rho m(i)*r13m + ∆2*(combination);
102

103 end1430

104 end
105 [x,y] = meshgrid(a3 m,rho m);
106

107 %linear f, logistic g
108 elseif choice=="3"1435

109 w m=5:45/(size−1):50;
110 rho m=1:239/(size−1):240;
111 for j=1:size
112 for i=1:size
1131440

114 r11m=(rho m(i) − ∆1 + w m(j))/(w m(j)+rho m(i)*a2/∆2);
115 r31m=r11m*a2/∆2;
116

117 combination=2*w m(j)*r11m − w m(j) + ∆1 − rho m(i) + ...
rho m(i)*r31m;1445

118
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119 P(i,j) = 1+∆2 + combination;
120 Q(i,j) = ∆2 + (∆2 + 1)*(combination);
121 R(i,j) = a2*rho m(i)*r11m + ∆2*(combination);
1221450

123 end
124 end
125 [x,y] = meshgrid(w m,rho m);
126

127 %hill−type f, logistic g1455

128 elseif choice=="4"
129

130 a4 m=90:200/(size−1):290;
131 rho m=1:239/(size−1):240;
132 r14m=0;1460

133 for j=1:size
134 for i=1:size
135 %computing equilibrium point numerically
136 poly=zeros(1,n+3);
137 poly(1)=−w*(a4 m(j)/∆2)ˆn;1465

138 poly(2)=(w−∆1)*(a4 m(j)/∆2)ˆn;
139 poly(n+1)=−w;
140 poly(n+2)=rho m(i)+w−∆1;
141 rooty=roots(poly);
142 posrootcount=0;1470

143

144 for rt=1:n+2
145 if real(rooty(rt))>0 && imag(rooty(rt))==0
146 r14m=real(rooty(rt));
147 posrootcount=posrootcount+1;1475

148 end
149 if posrootcount>1
150 fprintf('Additional root of %13.2e found at ...

a= %13.2e and rho = ...
%13.2e\n',r14m,a4 m(j),rho m(i));1480

151 end
152 end
153 if posrootcount==0 && ∆1>(rho m(i)+w) %parameter ...

range where there is no existence of the ...
equilibrium point by Descartes1485

154 P(i,j) = NaN;
155 Q(i,j) = NaN;
156 R(i,j) = NaN;
157 else
1581490

159 r34m=r14m*a4 m(j)/∆2;
160

161 combination=2*w*r14m − w + ∆1 − rho m(i)/(1+r34mˆn);
162

163 P(i,j) = 1+∆2 + combination;1495

164 Q(i,j) = ∆2 + (∆2 + 1)*(combination);
165 R(i,j) = a4 m(j)*rho m(i)*r14m + ∆2*(combination);
166 end
167 end
168 end1500
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169 [x,y] = meshgrid(a4 m,rho m);
170

171 end
172 end

1505

1 function tests = CharPolyCoeffs(x,y,P,Q,R,∆1,choice,size)
2 X=zeros(size);
3 if choice=="1"
41510

5 for i1=1:size
6 for j1=1:size
7 if P(i1,j1)<0 && Q(i1,j1)>0 && R(i1,j1)<0
8 X(i1,j1)=1;
9 elseif P(i1,j1)<0 && Q(i1,j1)>0 && R(i1,j1)>01515

10 X(i1,j1)=2;
11 elseif P(i1,j1)<0 && Q(i1,j1)<0 && R(i1,j1)<0
12 X(i1,j1)=3;
13 elseif P(i1,j1)<0 && Q(i1,j1)<0 && R(i1,j1)>0
14 X(i1,j1)=4;1520

15 elseif P(i1,j1)>0 && Q(i1,j1)>0 && R(i1,j1)<0
16 X(i1,j1)=5;
17 elseif P(i1,j1)≥0 && Q(i1,j1)≥0 && R(i1,j1)≥0
18 X(i1,j1)=6;
19 elseif P(i1,j1)>0 && Q(i1,j1)<0 && R(i1,j1)<01525

20 X(i1,j1)=7;
21 elseif P(i1,j1)>0 && Q(i1,j1)<0 && R(i1,j1)>0
22 X(i1,j1)=8;
23 else
24 X(i1,j1)=0;1530

25 end
26 end
27 end
28

29 for i2=0:81535

30 tests(i2+1)=ismember(i2,X);
31 end
32

33 elseif choice=="3"
34 for i1=1:size1540

35 for j1=1:size
36 if P(i1,j1)<0 && Q(i1,j1)>0 && R(i1,j1)<0 && ...

x(i1,j1)+y(i1,j1)>∆1
37 X(i1,j1)=1;
38 elseif P(i1,j1)<0 && Q(i1,j1)>0 && R(i1,j1)>0 && ...1545

x(i1,j1)+y(i1,j1)>∆1
39 X(i1,j1)=2;
40 elseif P(i1,j1)<0 && Q(i1,j1)<0 && R(i1,j1)<0 && ...

x(i1,j1)+y(i1,j1)>∆1
41 X(i1,j1)=3;1550

42 elseif P(i1,j1)<0 && Q(i1,j1)<0 && R(i1,j1)>0 && ...
x(i1,j1)+y(i1,j1)>∆1

43 X(i1,j1)=4;
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44 elseif P(i1,j1)>0 && Q(i1,j1)>0 && R(i1,j1)<0 && ...
x(i1,j1)+y(i1,j1)>∆1 %&& z(i1,j1) ==11555

45 X(i1,j1)=5;
46 elseif P(i1,j1)>0 && Q(i1,j1)>0 && R(i1,j1)>0 && ...

x(i1,j1)+y(i1,j1)>∆1 %&& z(i1,j1) ==1
47 X(i1,j1)=6;
48 elseif P(i1,j1)>0 && Q(i1,j1)<0 && R(i1,j1)<0 && ...1560

x(i1,j1)+y(i1,j1)>∆1 %&& z(i1,j1) ==1
49 X(i1,j1)=7;
50 elseif P(i1,j1)>0 && Q(i1,j1)<0 && R(i1,j1)>0 && ...

x(i1,j1)+y(i1,j1)>∆1 %&& z(i1,j1) ==1
51 X(i1,j1)=8;1565

52 elseif x(i1,j1)+y(i1,j1)≤∆1
53 X(i1,j1)=0;
54 else
55 X(i1,j1)=9;
56 end1570

57 end
58 end
59

60 for i2=0:9
61 tests(i2+1)=ismember(i2,X);1575

62 end
63

64 elseif choice=="2"
65

66 for i1=1:size1580

67 for j1=1:size
68 if P(i1,j1)<0 && Q(i1,j1)>0 && R(i1,j1)<0
69 X(i1,j1)=1;
70 elseif P(i1,j1)<0 && Q(i1,j1)>0 && R(i1,j1)>0
71 X(i1,j1)=2;1585

72 elseif P(i1,j1)<0 && Q(i1,j1)<0 && R(i1,j1)<0
73 X(i1,j1)=3;
74 elseif P(i1,j1)<0 && Q(i1,j1)<0 && R(i1,j1)>0
75 X(i1,j1)=4;
76 elseif P(i1,j1)>0 && Q(i1,j1)>0 && R(i1,j1)<01590

77 X(i1,j1)=5;
78 elseif P(i1,j1)≥0 && Q(i1,j1)≥0 && R(i1,j1)≥0
79 X(i1,j1)=6;
80 elseif P(i1,j1)>0 && Q(i1,j1)<0 && R(i1,j1)<0
81 X(i1,j1)=7;1595

82 elseif P(i1,j1)>0 && Q(i1,j1)<0 && R(i1,j1)>0
83 X(i1,j1)=8;
84 else
85 X(i1,j1)=0;
86 end1600

87 end
88 end
89

90 for i2=0:8
91 tests(i2+1)=ismember(i2,X);1605

92 end
93
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94 elseif choice=="4"
95

96 for i1=1:size1610

97 for j1=1:size
98 if P(i1,j1)<0 && Q(i1,j1)>0 && R(i1,j1)<0
99 X(i1,j1)=1;

100 elseif P(i1,j1)<0 && Q(i1,j1)>0 && R(i1,j1)>0
101 X(i1,j1)=2;1615

102 elseif P(i1,j1)<0 && Q(i1,j1)<0 && R(i1,j1)<0
103 X(i1,j1)=3;
104 elseif P(i1,j1)<0 && Q(i1,j1)<0 && R(i1,j1)>0
105 X(i1,j1)=4;
106 elseif P(i1,j1)>0 && Q(i1,j1)>0 && R(i1,j1)<01620

107 X(i1,j1)=5;
108 elseif P(i1,j1)≥0 && Q(i1,j1)≥0 && R(i1,j1)≥0
109 X(i1,j1)=6;
110 elseif P(i1,j1)>0 && Q(i1,j1)<0 && R(i1,j1)<0
111 X(i1,j1)=7;1625

112 elseif P(i1,j1)>0 && Q(i1,j1)<0 && R(i1,j1)>0
113 X(i1,j1)=8;
114 elseif isnan(P(i1,j1))
115 X(i1,j1)=0;
116 else1630

117 X(i1,j1)=9;
118 end
119 end
120 end
1211635

122 for i2=0:9
123 tests(i2+1)=ismember(i2,X);
124 end
125

126 end1640

127 end

7.2.3 Code for Chapter 3.5

The below MATLAB code provides the implicit plot (Figure 3.20) given in Chapter
3.5.1645

1 ∆1=15;
2 ∆2=20;
3

4 f = @(a,rho,omega) ∆...1650

2*(1+∆2)+((1+∆2)ˆ2*omega−a*rho)*(rho−∆1+omega)/(omega+rho*a/∆2)+(∆2+1)*omega.ˆ2*(rho−∆1+omega).ˆ2/(omega+rho*a/∆2).ˆ2;
5 interval = [350 700 12 100 6 40];
6 fimplicit3(f,interval)
7 xlabel('a');
8 ylabel('\rho');1655

9 zlabel('\omega');
10
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11 xPlane = [700 350 350 700];
12 yPlane = [12 12 100 100];
13 zPlane = ∆1−yPlane;1660

14 hold on;
15 patch(xPlane, yPlane, zPlane, 'r', 'FaceAlpha', 0.5);
16 hold off
17

18 xlim([350 700])1665

19 ylim([12 100])
20 zlim([6 40])

7.2.4 Code for Chapters 4 and 5

Code used to output figures showing Ri vs. time dynamics as well as 3D plots in1670

Chapters 4 and 5. Nonzero choices of H for Chapter 5 are given by modification of
the third equation, shown in comments.

1 %Adapted from Moiseev Igor (2020). Lorenz attaractor plot ...
(https://www.mathworks.com/matlabcentral/fileexchange/30066−lorenz−attaractor−plot), ...1675

MATLAB Central File Exchange. Retrieved June 28, 2020.
2

3 clc;
4 close all;
5 clear all;1680

6

7 [R1, R2, R3, T] = RBC(1, 1/8, 1/6, 1/120, .3, 24.98, 12.5, 5, ...
0.21, .166, 6.66, 0, 0, .25, 3, [1.6653 1.249 22.5], 0, 300);

8 %input (beta, k1, k2, mu3, gamma, s, theta, n, L, alpha, K, mu1, ...
mu2, A, choice, initV, ts, tf)1685

9

10 % beta − Individual blood regeneration amplifying factor ...
independent of fractional blood loss

11 % k1 − Transition rate between R1 and R2 (1/8 in humans)
12 % k2 − Transition rate between R2 and R3 (1/6 in humans)1690

13 % mu3 − Death rate of R3 (1/120 in humans)
14 % gamma − Individual blood regeneration amplifying factor ...

dependent on fractional blood loss
15 % s − Mean steady state value of R3
16 % theta − Saturation constant for R3 feedback1695

17 % n − Sensitivity of feedback with respect to changes in ...
population size

18 % L − Constant growth rate of R1
19 % alpha − Logistic growth rate
20 % K − Maximum stimulated size of R1 population1700

21 % mu1 − Natural apoptosis rate of R1
22 % mu2 − Natural apoptosis rate of R2
23 % A − Constant loss from R3
24 % choice − 1, 2, 3, or 4 for different F and G functions
25 % initV − Initial value starting conditions1705

26 % ts − Time at which to begin simulation
27 % tf − Time at which to end simulation
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28

29

301710

31 %below are the plots
32

33 % figure
34 % plot3(R1,R2,R3);
35 % axis equal;1715

36 % grid;
37 % title('Solution Curve (1000 days)');
38 % xlabel('R 1(x10ˆ{12} cells)'); ylabel('R 2(x10ˆ{12} cells)'); ...

zlabel('R 3(x10ˆ{12} cells)');
391720

40 % figure
41 % ...

plot3(R1(0.5*length(T):length(T)),R2(0.5*length(T):length(T)),R3(0.5*length(T):length(T)));
42 % axis equal;
43 % grid;1725

44 % xlabel('R 1(x10ˆ{12} cells)'); ylabel('R 2(x10ˆ{12} cells)'); ...
zlabel('R 3(x10ˆ{12} cells)');

45 % title('Solution Curve (1000 days) (Long Term Dynamics Only)');
46

47 figure1730

48 subplot(3,1,1)
49 plot(T,R1)
50 title('R 1 vs time');
51 xlabel('t (days)'); ylabel('R 1(x10ˆ{12} cells)');
52 subplot(3,1,2)1735

53 plot(T,R2)
54 title('R 2 vs time');
55 xlabel('t (days)'); ylabel('R 2(x10ˆ{12} cells)');
56 subplot(3,1,3)
57 plot(T,R3)1740

58 title('R 3 vs time');
59 xlabel('t (days)'); ylabel('R 3(x10ˆ{12} cells)');
60

61 % figure
62 % K = [R1,R2,R3];1745

63 % plotmatrix(K)
64

65 %end plot section
66

67 function [x,y,z,t] = RBC(beta, k1, k2, mu3, gamma, s, theta, n, ...1750

L, alpha, K, mu1, mu2, A, choice, initV, ts, tf, T, eps)
68 if nargin<18 %if too few inputs
69 error('MATLAB:lorenz:NotEnoughInputs','Not enough input ...

arguments.');
70 end1755

71 if nargin<19 %if correct number of inputs
72 eps = 0.0000001;
73 T = [ts tf];
74 end
75 options = odeset('RelTol',eps,'AbsTol',[eps eps eps/10]);1760

76 [T,X] = ode45(@(T,X) F(T, X, beta, k1, k2, mu3, gamma, s, theta, ...
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n, L, alpha, K, mu1, mu2, A, choice), T, initV, options);
77 x = X(:,1);
78 y = X(:,2);
79 z = X(:,3);1765

80 t=T;
81 return
82 end
83 function dx = F(T, X, beta, k1, k2, mu3, gamma, s, theta, n, L, ...

alpha, K, mu1, mu2, A, choice)1770

84 %choice determines which of the function choices will be utilized
85 dx = zeros(3,1);
86 if choice==1
87 dx(1) = beta*(L) − beta*(k1+mu1)*X(1) + ...

X(1)*gamma*(1/s)*(s−X(3));1775

88 elseif choice==2
89 dx(1) = beta*(L) − beta*(k1+mu1)*X(1) + ...

X(1)*gamma*((theta.ˆn)/(theta.ˆn + X(3).ˆn));
90 elseif choice==3
91 dx(1) = beta*alpha*X(1)*(1−X(1)/K) − beta*(k1+mu1)*X(1) + ...1780

X(1)*gamma*(1/s)*(s−X(3));
92 elseif choice==4
93 dx(1) = beta*alpha*X(1)*(1−X(1)/K) − beta*(k1+mu1)*X(1) + ...

X(1)*gamma*((theta.ˆn)/(theta.ˆn + X(3).ˆn));
94 end1785

95 dx(2) = (beta)*(k1*X(1) − (k2+mu2)*X(2));
96 dx(3) = (beta)*(k2*X(2) − mu3*X(3) );
97

98 %dx(3) = (beta)*(k2*X(2) − mu3*X(3) − A*abs(sin(2*pi*T/60−0)));
991790

100 %dx(3) = (beta)*(k2*X(2) − mu3*X(3) − A);
101

102 %%%
103 % if mod(T,30)<24
104 % dx(3) = (beta)*(k2*X(2) − mu3*X(3) );1795

105 % else
106 % dx(3) = (beta)*(k2*X(2) − mu3*X(3) − A);
107 % end
108

109 return1800

110 end
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